Z3
 
Loading...
Searching...
No Matches
expr Class Reference

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort. More...

#include <z3++.h>

+ Inheritance diagram for expr:

Data Structures

class  iterator
 

Public Member Functions

 expr (context &c)
 
 expr (context &c, Z3_ast n)
 
sort get_sort () const
 Return the sort of this expression.
 
bool is_bool () const
 Return true if this is a Boolean expression.
 
bool is_int () const
 Return true if this is an integer expression.
 
bool is_real () const
 Return true if this is a real expression.
 
bool is_arith () const
 Return true if this is an integer or real expression.
 
bool is_bv () const
 Return true if this is a Bit-vector expression.
 
bool is_array () const
 Return true if this is a Array expression.
 
bool is_datatype () const
 Return true if this is a Datatype expression.
 
bool is_relation () const
 Return true if this is a Relation expression.
 
bool is_seq () const
 Return true if this is a sequence expression.
 
bool is_re () const
 Return true if this is a regular expression.
 
bool is_finite_domain () const
 Return true if this is a Finite-domain expression.
 
bool is_fpa () const
 Return true if this is a FloatingPoint expression. .
 
bool is_numeral () const
 Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings.
 
bool is_numeral_i64 (int64_t &i) const
 
bool is_numeral_u64 (uint64_t &i) const
 
bool is_numeral_i (int &i) const
 
bool is_numeral_u (unsigned &i) const
 
bool is_numeral (std::string &s) const
 
bool is_numeral (std::string &s, unsigned precision) const
 
bool is_numeral (double &d) const
 
bool as_binary (std::string &s) const
 
double as_double () const
 
uint64_t as_uint64 () const
 
int64_t as_int64 () const
 
bool is_app () const
 Return true if this expression is an application.
 
bool is_const () const
 Return true if this expression is a constant (i.e., an application with 0 arguments).
 
bool is_quantifier () const
 Return true if this expression is a quantifier.
 
bool is_forall () const
 Return true if this expression is a universal quantifier.
 
bool is_exists () const
 Return true if this expression is an existential quantifier.
 
bool is_lambda () const
 Return true if this expression is a lambda expression.
 
bool is_var () const
 Return true if this expression is a variable.
 
bool is_algebraic () const
 Return true if expression is an algebraic number.
 
bool is_well_sorted () const
 Return true if this expression is well sorted (aka type correct).
 
expr mk_is_inf () const
 Return Boolean expression to test for whether an FP expression is inf.
 
expr mk_is_nan () const
 Return Boolean expression to test for whether an FP expression is a NaN.
 
expr mk_is_normal () const
 Return Boolean expression to test for whether an FP expression is a normal.
 
expr mk_is_subnormal () const
 Return Boolean expression to test for whether an FP expression is a subnormal.
 
expr mk_is_zero () const
 Return Boolean expression to test for whether an FP expression is a zero.
 
expr mk_to_ieee_bv () const
 Convert this fpa into an IEEE BV.
 
expr mk_from_ieee_bv (sort const &s) const
 Convert this IEEE BV into a fpa.
 
std::string get_decimal_string (int precision) const
 Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic.
 
expr algebraic_lower (unsigned precision) const
 
expr algebraic_upper (unsigned precision) const
 
expr_vector algebraic_poly () const
 Return coefficients for p of an algebraic number (root-obj p i)
 
unsigned algebraic_i () const
 Return i of an algebraic number (root-obj p i)
 
unsigned id () const
 retrieve unique identifier for expression.
 
int get_numeral_int () const
 Return int value of numeral, throw if result cannot fit in machine int.
 
unsigned get_numeral_uint () const
 Return uint value of numeral, throw if result cannot fit in machine uint.
 
int64_t get_numeral_int64 () const
 Return int64_t value of numeral, throw if result cannot fit in int64_t.
 
uint64_t get_numeral_uint64 () const
 Return uint64_t value of numeral, throw if result cannot fit in uint64_t.
 
Z3_lbool bool_value () const
 
expr numerator () const
 
expr denominator () const
 
bool is_string_value () const
 Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string()
 
std::string get_string () const
 for a string value expression return an escaped string value.
 
std::u32string get_u32string () const
 for a string value expression return an unespaced string value.
 
 operator Z3_app () const
 
func_decl decl () const
 Return the declaration associated with this application. This method assumes the expression is an application.
 
unsigned num_args () const
 Return the number of arguments in this application. This method assumes the expression is an application.
 
expr arg (unsigned i) const
 Return the i-th argument of this application. This method assumes the expression is an application.
 
expr_vector args () const
 Return a vector of all the arguments of this application. This method assumes the expression is an application.
 
expr body () const
 Return the 'body' of this quantifier.
 
bool is_true () const
 
bool is_false () const
 
bool is_not () const
 
bool is_and () const
 
bool is_or () const
 
bool is_xor () const
 
bool is_implies () const
 
bool is_eq () const
 
bool is_ite () const
 
bool is_distinct () const
 
expr rotate_left (unsigned i) const
 
expr rotate_right (unsigned i) const
 
expr repeat (unsigned i) const
 
expr extract (unsigned hi, unsigned lo) const
 
expr bit2bool (unsigned i) const
 
unsigned lo () const
 
unsigned hi () const
 
expr extract (expr const &offset, expr const &length) const
 sequence and regular expression operations.
 
expr replace (expr const &src, expr const &dst) const
 
expr unit () const
 
expr contains (expr const &s) const
 
expr at (expr const &index) const
 
expr nth (expr const &index) const
 
expr length () const
 
expr stoi () const
 
expr itos () const
 
expr ubvtos () const
 
expr sbvtos () const
 
expr char_to_int () const
 
expr char_to_bv () const
 
expr char_from_bv () const
 
expr is_digit () const
 
expr loop (unsigned lo)
 create a looping regular expression.
 
expr loop (unsigned lo, unsigned hi)
 
expr operator[] (expr const &index) const
 
expr operator[] (expr_vector const &index) const
 
expr simplify () const
 Return a simplified version of this expression.
 
expr simplify (params const &p) const
 Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier.
 
expr substitute (expr_vector const &src, expr_vector const &dst)
 Apply substitution. Replace src expressions by dst.
 
expr substitute (expr_vector const &dst)
 Apply substitution. Replace bound variables by expressions.
 
expr substitute (func_decl_vector const &funs, expr_vector const &bodies)
 Apply function substitution by macro definitions.

 
iterator begin ()
 
iterator end ()
 
- Public Member Functions inherited from ast
 ast (context &c)
 
 ast (context &c, Z3_ast n)
 
 ast (ast const &s)
 
 ~ast () override
 
 operator Z3_ast () const
 
 operator bool () const
 
astoperator= (ast const &s)
 
Z3_ast_kind kind () const
 
unsigned hash () const
 
std::string to_string () const
 
- Public Member Functions inherited from object
 object (context &c)
 
virtual ~object ()=default
 
contextctx () const
 
Z3_error_code check_error () const
 

Friends

expr operator! (expr const &a)
 Return an expression representing not(a).
 
expr operator&& (expr const &a, expr const &b)
 Return an expression representing a and b.
 
expr operator&& (expr const &a, bool b)
 Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.
 
expr operator&& (bool a, expr const &b)
 Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.
 
expr operator|| (expr const &a, expr const &b)
 Return an expression representing a or b.
 
expr operator|| (expr const &a, bool b)
 Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.
 
expr operator|| (bool a, expr const &b)
 Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.
 
expr implies (expr const &a, expr const &b)
 
expr implies (expr const &a, bool b)
 
expr implies (bool a, expr const &b)
 
expr mk_or (expr_vector const &args)
 
expr mk_xor (expr_vector const &args)
 
expr mk_and (expr_vector const &args)
 
expr ite (expr const &c, expr const &t, expr const &e)
 Create the if-then-else expression ite(c, t, e)
 
expr distinct (expr_vector const &args)
 
expr concat (expr const &a, expr const &b)
 
expr concat (expr_vector const &args)
 
expr operator== (expr const &a, expr const &b)
 
expr operator== (expr const &a, int b)
 
expr operator== (int a, expr const &b)
 
expr operator!= (expr const &a, expr const &b)
 
expr operator!= (expr const &a, int b)
 
expr operator!= (int a, expr const &b)
 
expr operator+ (expr const &a, expr const &b)
 
expr operator+ (expr const &a, int b)
 
expr operator+ (int a, expr const &b)
 
expr sum (expr_vector const &args)
 
expr operator* (expr const &a, expr const &b)
 
expr operator* (expr const &a, int b)
 
expr operator* (int a, expr const &b)
 
expr pw (expr const &a, expr const &b)
 
expr pw (expr const &a, int b)
 
expr pw (int a, expr const &b)
 
expr mod (expr const &a, expr const &b)
 
expr mod (expr const &a, int b)
 
expr mod (int a, expr const &b)
 
expr rem (expr const &a, expr const &b)
 
expr rem (expr const &a, int b)
 
expr rem (int a, expr const &b)
 
expr is_int (expr const &e)
 
expr operator/ (expr const &a, expr const &b)
 
expr operator/ (expr const &a, int b)
 
expr operator/ (int a, expr const &b)
 
expr operator- (expr const &a)
 
expr operator- (expr const &a, expr const &b)
 
expr operator- (expr const &a, int b)
 
expr operator- (int a, expr const &b)
 
expr operator<= (expr const &a, expr const &b)
 
expr operator<= (expr const &a, int b)
 
expr operator<= (int a, expr const &b)
 
expr operator>= (expr const &a, expr const &b)
 
expr operator>= (expr const &a, int b)
 
expr operator>= (int a, expr const &b)
 
expr operator< (expr const &a, expr const &b)
 
expr operator< (expr const &a, int b)
 
expr operator< (int a, expr const &b)
 
expr operator> (expr const &a, expr const &b)
 
expr operator> (expr const &a, int b)
 
expr operator> (int a, expr const &b)
 
expr pble (expr_vector const &es, int const *coeffs, int bound)
 
expr pbge (expr_vector const &es, int const *coeffs, int bound)
 
expr pbeq (expr_vector const &es, int const *coeffs, int bound)
 
expr atmost (expr_vector const &es, unsigned bound)
 
expr atleast (expr_vector const &es, unsigned bound)
 
expr operator& (expr const &a, expr const &b)
 
expr operator& (expr const &a, int b)
 
expr operator& (int a, expr const &b)
 
expr operator^ (expr const &a, expr const &b)
 
expr operator^ (expr const &a, int b)
 
expr operator^ (int a, expr const &b)
 
expr operator| (expr const &a, expr const &b)
 
expr operator| (expr const &a, int b)
 
expr operator| (int a, expr const &b)
 
expr nand (expr const &a, expr const &b)
 
expr nor (expr const &a, expr const &b)
 
expr xnor (expr const &a, expr const &b)
 
expr min (expr const &a, expr const &b)
 
expr max (expr const &a, expr const &b)
 
expr bv2int (expr const &a, bool is_signed)
 bit-vector and integer conversions.
 
expr int2bv (unsigned n, expr const &a)
 
expr bvadd_no_overflow (expr const &a, expr const &b, bool is_signed)
 bit-vector overflow/underflow checks
 
expr bvadd_no_underflow (expr const &a, expr const &b)
 
expr bvsub_no_overflow (expr const &a, expr const &b)
 
expr bvsub_no_underflow (expr const &a, expr const &b, bool is_signed)
 
expr bvsdiv_no_overflow (expr const &a, expr const &b)
 
expr bvneg_no_overflow (expr const &a)
 
expr bvmul_no_overflow (expr const &a, expr const &b, bool is_signed)
 
expr bvmul_no_underflow (expr const &a, expr const &b)
 
expr bvredor (expr const &a)
 
expr bvredand (expr const &a)
 
expr abs (expr const &a)
 
expr sqrt (expr const &a, expr const &rm)
 
expr fp_eq (expr const &a, expr const &b)
 
expr operator~ (expr const &a)
 
expr fma (expr const &a, expr const &b, expr const &c, expr const &rm)
 FloatingPoint fused multiply-add.
 
expr fpa_fp (expr const &sgn, expr const &exp, expr const &sig)
 Create an expression of FloatingPoint sort from three bit-vector expressions.
 
expr fpa_to_sbv (expr const &t, unsigned sz)
 Conversion of a floating-point term into a signed bit-vector.
 
expr fpa_to_ubv (expr const &t, unsigned sz)
 Conversion of a floating-point term into an unsigned bit-vector.
 
expr sbv_to_fpa (expr const &t, sort s)
 Conversion of a signed bit-vector term into a floating-point.
 
expr ubv_to_fpa (expr const &t, sort s)
 Conversion of an unsigned bit-vector term into a floating-point.
 
expr fpa_to_fpa (expr const &t, sort s)
 Conversion of a floating-point term into another floating-point.
 
expr round_fpa_to_closest_integer (expr const &t)
 Round a floating-point term into its closest integer.
 
expr range (expr const &lo, expr const &hi)
 

Additional Inherited Members

- Protected Attributes inherited from ast
Z3_ast m_ast
 
- Protected Attributes inherited from object
contextm_ctx
 

Detailed Description

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort.

Definition at line 811 of file z3++.h.

Constructor & Destructor Documentation

◆ expr() [1/2]

◆ expr() [2/2]

expr ( context & c,
Z3_ast n )
inline

Definition at line 814 of file z3++.h.

814:ast(c, reinterpret_cast<Z3_ast>(n)) {}

Member Function Documentation

◆ algebraic_i()

unsigned algebraic_i ( ) const
inline

Return i of an algebraic number (root-obj p i)

Definition at line 1047 of file z3++.h.

1047 {
1048 assert(is_algebraic());
1049 unsigned i = Z3_algebraic_get_i(ctx(), m_ast);
1050 check_error();
1051 return i;
1052 }
Z3_ast m_ast
Definition z3++.h:553
bool is_algebraic() const
Return true if expression is an algebraic number.
Definition z3++.h:929
Z3_error_code check_error() const
Definition z3++.h:475
context & ctx() const
Definition z3++.h:474
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.

◆ algebraic_lower()

expr algebraic_lower ( unsigned precision) const
inline

Retrieve lower and upper bounds for algebraic numerals based on a decimal precision

Definition at line 1020 of file z3++.h.

1020 {
1021 assert(is_algebraic());
1022 Z3_ast r = Z3_get_algebraic_number_lower(ctx(), m_ast, precision);
1023 check_error();
1024 return expr(ctx(), r);
1025 }
expr(context &c)
Definition z3++.h:813
Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision)
Return a lower bound for the given real algebraic number. The interval isolating the number is smalle...

◆ algebraic_poly()

expr_vector algebraic_poly ( ) const
inline

Return coefficients for p of an algebraic number (root-obj p i)

Definition at line 1037 of file z3++.h.

1037 {
1038 assert(is_algebraic());
1039 Z3_ast_vector r = Z3_algebraic_get_poly(ctx(), m_ast);
1040 check_error();
1041 return expr_vector(ctx(), r);
1042 }
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.
ast_vector_tpl< expr > expr_vector
Definition z3++.h:76

◆ algebraic_upper()

expr algebraic_upper ( unsigned precision) const
inline

Definition at line 1027 of file z3++.h.

1027 {
1028 assert(is_algebraic());
1029 Z3_ast r = Z3_get_algebraic_number_upper(ctx(), m_ast, precision);
1030 check_error();
1031 return expr(ctx(), r);
1032 }
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...

◆ arg()

expr arg ( unsigned i) const
inline

Return the i-th argument of this application. This method assumes the expression is an application.

Precondition
is_app()
i < num_args()

Definition at line 1208 of file z3++.h.

1208{ Z3_ast r = Z3_get_app_arg(ctx(), *this, i); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)
Return the i-th argument of the given application.

Referenced by AstRef::__bool__(), expr::args(), ExprRef::children(), and expr::iterator::operator*().

◆ args()

expr_vector args ( ) const
inline

Return a vector of all the arguments of this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1215 of file z3++.h.

1215 {
1216 expr_vector vec(ctx());
1217 unsigned argCnt = num_args();
1218 for (unsigned i = 0; i < argCnt; i++)
1219 vec.push_back(arg(i));
1220 return vec;
1221 }
unsigned num_args() const
Return the number of arguments in this application. This method assumes the expression is an applicat...
Definition z3++.h:1200
expr arg(unsigned i) const
Return the i-th argument of this application. This method assumes the expression is an application.
Definition z3++.h:1208

◆ as_binary()

bool as_binary ( std::string & s) const
inline

Definition at line 889 of file z3++.h.

889{ if (!is_numeral()) return false; s = Z3_get_numeral_binary_string(ctx(), m_ast); check_error(); return true; }
bool is_numeral() const
Return true if this expression is a numeral. Specialized functions also return representations for th...
Definition z3++.h:881
Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)
Return numeral value, as a binary string of a numeric constant term.

◆ as_double()

double as_double ( ) const
inline

Definition at line 891 of file z3++.h.

891{ double d = 0; is_numeral(d); return d; }

◆ as_int64()

int64_t as_int64 ( ) const
inline

Definition at line 893 of file z3++.h.

893{ int64_t r = 0; is_numeral_i64(r); return r; }
bool is_numeral_i64(int64_t &i) const
Definition z3++.h:882

◆ as_uint64()

uint64_t as_uint64 ( ) const
inline

Definition at line 892 of file z3++.h.

892{ uint64_t r = 0; is_numeral_u64(r); return r; }
bool is_numeral_u64(uint64_t &i) const
Definition z3++.h:883

◆ at()

expr at ( expr const & index) const
inline

Definition at line 1488 of file z3++.h.

1488 {
1489 check_context(*this, index);
1490 Z3_ast r = Z3_mk_seq_at(ctx(), *this, index);
1491 check_error();
1492 return expr(ctx(), r);
1493 }
friend void check_context(object const &a, object const &b)
Definition z3++.h:478
Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the unit sequence positioned at position index. The sequence is empty if the index is...

◆ begin()

iterator begin ( )
inline

Definition at line 1617 of file z3++.h.

1617{ return iterator(*this, 0); }

◆ bit2bool()

expr bit2bool ( unsigned i) const
inline

Definition at line 1418 of file z3++.h.

1418{ Z3_ast r = Z3_mk_bit2bool(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_error_code check_error() const
Auxiliary method used to check for API usage errors.
Definition z3++.h:192
Z3_ast Z3_API Z3_mk_bit2bool(Z3_context c, unsigned i, Z3_ast t1)
Extracts the bit at position i of a bit-vector and yields a boolean.

◆ body()

expr body ( ) const
inline

Return the 'body' of this quantifier.

Precondition
is_quantifier()

Definition at line 1228 of file z3++.h.

1228{ assert(is_quantifier()); Z3_ast r = Z3_get_quantifier_body(ctx(), *this); check_error(); return expr(ctx(), r); }
bool is_quantifier() const
Return true if this expression is a quantifier.
Definition z3++.h:907
Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)
Return body of quantifier.

Referenced by QuantifierRef::children().

◆ bool_value()

Z3_lbool bool_value ( ) const
inline

Definition at line 1133 of file z3++.h.

1133 {
1134 return Z3_get_bool_value(ctx(), m_ast);
1135 }
Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a)
Return Z3_L_TRUE if a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.

◆ char_from_bv()

expr char_from_bv ( ) const
inline

Definition at line 1535 of file z3++.h.

1535 {
1536 Z3_ast r = Z3_mk_char_from_bv(ctx(), *this);
1537 check_error();
1538 return expr(ctx(), r);
1539 }
Z3_ast Z3_API Z3_mk_char_from_bv(Z3_context c, Z3_ast bv)
Create a character from a bit-vector (code point).

◆ char_to_bv()

expr char_to_bv ( ) const
inline

Definition at line 1530 of file z3++.h.

1530 {
1531 Z3_ast r = Z3_mk_char_to_bv(ctx(), *this);
1532 check_error();
1533 return expr(ctx(), r);
1534 }
Z3_ast Z3_API Z3_mk_char_to_bv(Z3_context c, Z3_ast ch)
Create a bit-vector (code point) from character.

◆ char_to_int()

expr char_to_int ( ) const
inline

Definition at line 1525 of file z3++.h.

1525 {
1526 Z3_ast r = Z3_mk_char_to_int(ctx(), *this);
1527 check_error();
1528 return expr(ctx(), r);
1529 }
Z3_ast Z3_API Z3_mk_char_to_int(Z3_context c, Z3_ast ch)
Create an integer (code point) from character.

◆ contains()

expr contains ( expr const & s) const
inline

Definition at line 1482 of file z3++.h.

1482 {
1483 check_context(*this, s);
1484 Z3_ast r = Z3_mk_seq_contains(ctx(), *this, s);
1485 check_error();
1486 return expr(ctx(), r);
1487 }
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.

◆ decl()

func_decl decl ( ) const
inline

Return the declaration associated with this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1193 of file z3++.h.

1193{ Z3_func_decl f = Z3_get_app_decl(ctx(), *this); check_error(); return func_decl(ctx(), f); }
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)
Return the declaration of a constant or function application.

Referenced by expr::hi(), expr::is_and(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and ExprRef::params().

◆ denominator()

expr denominator ( ) const
inline

Definition at line 1145 of file z3++.h.

1145 {
1146 assert(is_numeral());
1147 Z3_ast r = Z3_get_denominator(ctx(), m_ast);
1148 check_error();
1149 return expr(ctx(),r);
1150 }
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::denominator_as_long(), and RatNumRef::is_int_value().

◆ end()

iterator end ( )
inline

Definition at line 1618 of file z3++.h.

1618{ return iterator(*this, is_app() ? num_args() : 0); }
bool is_app() const
Return true if this expression is an application.
Definition z3++.h:899

◆ extract() [1/2]

expr extract ( expr const & offset,
expr const & length ) const
inline

sequence and regular expression operations.

  • is overloaded as sequence concatenation and regular expression union. concat is overloaded to handle sequences and regular expressions

Definition at line 1467 of file z3++.h.

1467 {
1468 check_context(*this, offset); check_context(offset, length);
1469 Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
1470 }
expr length() const
Definition z3++.h:1500
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.

◆ extract() [2/2]

expr extract ( unsigned hi,
unsigned lo ) const
inline

Definition at line 1417 of file z3++.h.

1417{ Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
unsigned hi() const
Definition z3++.h:1420
unsigned lo() const
Definition z3++.h:1419
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...

◆ get_decimal_string()

std::string get_decimal_string ( int precision) const
inline

Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic.

Precondition
is_numeral() || is_algebraic()

Definition at line 1012 of file z3++.h.

1012 {
1013 assert(is_numeral() || is_algebraic());
1014 return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
1015 }
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ get_numeral_int()

int get_numeral_int ( ) const
inline

Return int value of numeral, throw if result cannot fit in machine int.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_i function.

Precondition
is_numeral()

Definition at line 1069 of file z3++.h.

1069 {
1070 int result = 0;
1071 if (!is_numeral_i(result)) {
1072 assert(ctx().enable_exceptions());
1073 if (!ctx().enable_exceptions()) return 0;
1074 Z3_THROW(exception("numeral does not fit in machine int"));
1075 }
1076 return result;
1077 }
bool is_numeral_i(int &i) const
Definition z3++.h:884
#define Z3_THROW(x)
Definition z3++.h:103

◆ get_numeral_int64()

int64_t get_numeral_int64 ( ) const
inline

Return int64_t value of numeral, throw if result cannot fit in int64_t.

Precondition
is_numeral()

Definition at line 1105 of file z3++.h.

1105 {
1106 assert(is_numeral());
1107 int64_t result = 0;
1108 if (!is_numeral_i64(result)) {
1109 assert(ctx().enable_exceptions());
1110 if (!ctx().enable_exceptions()) return 0;
1111 Z3_THROW(exception("numeral does not fit in machine int64_t"));
1112 }
1113 return result;
1114 }

◆ get_numeral_uint()

unsigned get_numeral_uint ( ) const
inline

Return uint value of numeral, throw if result cannot fit in machine uint.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_u function.

Precondition
is_numeral()

Definition at line 1088 of file z3++.h.

1088 {
1089 assert(is_numeral());
1090 unsigned result = 0;
1091 if (!is_numeral_u(result)) {
1092 assert(ctx().enable_exceptions());
1093 if (!ctx().enable_exceptions()) return 0;
1094 Z3_THROW(exception("numeral does not fit in machine uint"));
1095 }
1096 return result;
1097 }
bool is_numeral_u(unsigned &i) const
Definition z3++.h:885

◆ get_numeral_uint64()

uint64_t get_numeral_uint64 ( ) const
inline

Return uint64_t value of numeral, throw if result cannot fit in uint64_t.

Precondition
is_numeral()

Definition at line 1122 of file z3++.h.

1122 {
1123 assert(is_numeral());
1124 uint64_t result = 0;
1125 if (!is_numeral_u64(result)) {
1126 assert(ctx().enable_exceptions());
1127 if (!ctx().enable_exceptions()) return 0;
1128 Z3_THROW(exception("numeral does not fit in machine uint64_t"));
1129 }
1130 return result;
1131 }

◆ get_sort()

◆ get_string()

std::string get_string ( ) const
inline

for a string value expression return an escaped string value.

Precondition
expression is for a string value.

Definition at line 1164 of file z3++.h.

1164 {
1165 assert(is_string_value());
1166 char const* s = Z3_get_string(ctx(), m_ast);
1167 check_error();
1168 return std::string(s);
1169 }
bool is_string_value() const
Return true if this expression is a string literal. The string can be accessed using get_string() and...
Definition z3++.h:1157
Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s)
Retrieve the string constant stored in s. Characters outside the basic printable ASCII range are esca...

◆ get_u32string()

std::u32string get_u32string ( ) const
inline

for a string value expression return an unespaced string value.

Precondition
expression is for a string value.

Definition at line 1176 of file z3++.h.

1176 {
1177 assert(is_string_value());
1178 unsigned n = Z3_get_string_length(ctx(), m_ast);
1179 std::u32string s;
1180 s.resize(n);
1181 Z3_get_string_contents(ctx(), m_ast, n, (unsigned*)s.data());
1182 return s;
1183 }
void Z3_API Z3_get_string_contents(Z3_context c, Z3_ast s, unsigned length, unsigned contents[])
Retrieve the unescaped string constant stored in s.
unsigned Z3_API Z3_get_string_length(Z3_context c, Z3_ast s)
Retrieve the length of the unescaped string constant stored in s.

◆ hi()

unsigned hi ( ) const
inline

Definition at line 1420 of file z3++.h.

1420{ assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }
func_decl decl() const
Return the declaration associated with this application. This method assumes the expression is an app...
Definition z3++.h:1193
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)
Return the number of parameters associated with a declaration.
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the integer value associated with an integer parameter.

Referenced by expr::extract(), and expr::loop().

◆ id()

unsigned id ( ) const
inline

retrieve unique identifier for expression.

Definition at line 1057 of file z3++.h.

1057{ unsigned r = Z3_get_ast_id(ctx(), m_ast); check_error(); return r; }
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)
Return a unique identifier for t. The identifier is unique up to structural equality....

◆ is_algebraic()

bool is_algebraic ( ) const
inline

Return true if expression is an algebraic number.

Definition at line 929 of file z3++.h.

929{ return Z3_is_algebraic_number(ctx(), m_ast); }
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)
Return true if the given AST is a real algebraic number.

Referenced by expr::algebraic_i(), expr::algebraic_lower(), expr::algebraic_poly(), expr::algebraic_upper(), and expr::get_decimal_string().

◆ is_and()

bool is_and ( ) const
inline

Definition at line 1297 of file z3++.h.

1297{ return is_app() && Z3_OP_AND == decl().decl_kind(); }
Z3_decl_kind decl_kind() const
Definition z3++.h:775
@ Z3_OP_AND
Definition z3_api.h:970

◆ is_app()

bool is_app ( ) const
inline

Return true if this expression is an application.

Definition at line 899 of file z3++.h.

899{ return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
Z3_ast_kind kind() const
Definition z3++.h:569
@ Z3_APP_AST
Definition z3_api.h:143
@ Z3_NUMERAL_AST
Definition z3_api.h:142

Referenced by expr::end(), expr::hi(), expr::is_and(), expr::is_const(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and expr::operator Z3_app().

◆ is_arith()

bool is_arith ( ) const
inline

Return true if this is an integer or real expression.

Definition at line 836 of file z3++.h.

836{ return get_sort().is_arith(); }
sort get_sort() const
Return the sort of this expression.
Definition z3++.h:819
bool is_arith() const
Return true if this sort is the Integer or Real sort.
Definition z3++.h:692

◆ is_array()

bool is_array ( ) const
inline

Return true if this is a Array expression.

Definition at line 844 of file z3++.h.

844{ return get_sort().is_array(); }
bool is_array() const
Return true if this sort is a Array sort.
Definition z3++.h:700

Referenced by expr::operator[]().

◆ is_bool()

bool is_bool ( ) const
inline

Return true if this is a Boolean expression.

Definition at line 824 of file z3++.h.

824{ return get_sort().is_bool(); }
bool is_bool() const
Return true if this sort is the Boolean sort.
Definition z3++.h:680

Referenced by optimize::add(), optimize::add(), optimize::add(), solver::add(), solver::add(), optimize::add_soft(), and optimize::add_soft().

◆ is_bv()

bool is_bv ( ) const
inline

Return true if this is a Bit-vector expression.

Definition at line 840 of file z3++.h.

840{ return get_sort().is_bv(); }
bool is_bv() const
Return true if this sort is a Bit-vector sort.
Definition z3++.h:696

Referenced by expr::mk_from_ieee_bv().

◆ is_const()

bool is_const ( ) const
inline

Return true if this expression is a constant (i.e., an application with 0 arguments).

Definition at line 903 of file z3++.h.

903{ return is_app() && num_args() == 0; }

Referenced by solver::add().

◆ is_datatype()

bool is_datatype ( ) const
inline

Return true if this is a Datatype expression.

Definition at line 848 of file z3++.h.

848{ return get_sort().is_datatype(); }
bool is_datatype() const
Return true if this sort is a Datatype sort.
Definition z3++.h:704

◆ is_digit()

expr is_digit ( ) const
inline

Definition at line 1540 of file z3++.h.

1540 {
1541 Z3_ast r = Z3_mk_char_is_digit(ctx(), *this);
1542 check_error();
1543 return expr(ctx(), r);
1544 }
Z3_ast Z3_API Z3_mk_char_is_digit(Z3_context c, Z3_ast ch)
Create a check if the character is a digit.

◆ is_distinct()

bool is_distinct ( ) const
inline

Definition at line 1303 of file z3++.h.

1303{ return is_app() && Z3_OP_DISTINCT == decl().decl_kind(); }
@ Z3_OP_DISTINCT
Definition z3_api.h:968

◆ is_eq()

bool is_eq ( ) const
inline

Definition at line 1301 of file z3++.h.

1301{ return is_app() && Z3_OP_EQ == decl().decl_kind(); }
@ Z3_OP_EQ
Definition z3_api.h:967

◆ is_exists()

bool is_exists ( ) const
inline

Return true if this expression is an existential quantifier.

Definition at line 916 of file z3++.h.

916{ return Z3_is_quantifier_exists(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)
Determine if ast is an existential quantifier.

◆ is_false()

bool is_false ( ) const
inline

Definition at line 1295 of file z3++.h.

1295{ return is_app() && Z3_OP_FALSE == decl().decl_kind(); }
@ Z3_OP_FALSE
Definition z3_api.h:966

◆ is_finite_domain()

bool is_finite_domain ( ) const
inline

Return true if this is a Finite-domain expression.

Remarks
Finite-domain is special kind of interpreted sort: is_bool(), is_bv() and is_finite_domain() are mutually exclusive.

Definition at line 870 of file z3++.h.

870{ return get_sort().is_finite_domain(); }
bool is_finite_domain() const
Return true if this sort is a Finite domain sort.
Definition z3++.h:720

◆ is_forall()

bool is_forall ( ) const
inline

Return true if this expression is a universal quantifier.

Definition at line 912 of file z3++.h.

912{ return Z3_is_quantifier_forall(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)
Determine if an ast is a universal quantifier.

◆ is_fpa()

bool is_fpa ( ) const
inline

Return true if this is a FloatingPoint expression. .

Definition at line 874 of file z3++.h.

874{ return get_sort().is_fpa(); }
bool is_fpa() const
Return true if this sort is a Floating point sort.
Definition z3++.h:724

Referenced by expr::mk_is_inf(), expr::mk_is_nan(), expr::mk_is_normal(), expr::mk_is_subnormal(), expr::mk_is_zero(), expr::mk_to_ieee_bv(), z3::operator!=(), z3::operator!=(), z3::operator==(), and z3::operator==().

◆ is_implies()

bool is_implies ( ) const
inline

Definition at line 1300 of file z3++.h.

1300{ return is_app() && Z3_OP_IMPLIES == decl().decl_kind(); }
@ Z3_OP_IMPLIES
Definition z3_api.h:975

◆ is_int()

bool is_int ( ) const
inline

Return true if this is an integer expression.

Definition at line 828 of file z3++.h.

828{ return get_sort().is_int(); }
bool is_int() const
Return true if this sort is the Integer sort.
Definition z3++.h:684

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ is_ite()

bool is_ite ( ) const
inline

Definition at line 1302 of file z3++.h.

1302{ return is_app() && Z3_OP_ITE == decl().decl_kind(); }
@ Z3_OP_ITE
Definition z3_api.h:969

◆ is_lambda()

bool is_lambda ( ) const
inline

Return true if this expression is a lambda expression.

Definition at line 920 of file z3++.h.

920{ return Z3_is_lambda(ctx(), m_ast); }
bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)
Determine if ast is a lambda expression.

Referenced by QuantifierRef::__getitem__(), and QuantifierRef::sort().

◆ is_not()

bool is_not ( ) const
inline

Definition at line 1296 of file z3++.h.

1296{ return is_app() && Z3_OP_NOT == decl().decl_kind(); }
@ Z3_OP_NOT
Definition z3_api.h:974

◆ is_numeral() [1/4]

bool is_numeral ( ) const
inline

Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings.

Definition at line 881 of file z3++.h.

881{ return kind() == Z3_NUMERAL_AST; }

Referenced by expr::as_binary(), expr::as_double(), expr::denominator(), expr::get_decimal_string(), expr::get_numeral_int64(), expr::get_numeral_uint(), expr::get_numeral_uint64(), and expr::numerator().

◆ is_numeral() [2/4]

bool is_numeral ( double & d) const
inline

Definition at line 888 of file z3++.h.

888{ if (!is_numeral()) return false; d = Z3_get_numeral_double(ctx(), m_ast); check_error(); return true; }
double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a)
Return numeral as a double.

Referenced by expr::is_numeral().

◆ is_numeral() [3/4]

bool is_numeral ( std::string & s) const
inline

Definition at line 886 of file z3++.h.

886{ if (!is_numeral()) return false; s = Z3_get_numeral_string(ctx(), m_ast); check_error(); return true; }
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.

Referenced by expr::is_numeral().

◆ is_numeral() [4/4]

bool is_numeral ( std::string & s,
unsigned precision ) const
inline

Definition at line 887 of file z3++.h.

887{ if (!is_numeral()) return false; s = Z3_get_numeral_decimal_string(ctx(), m_ast, precision); check_error(); return true; }

Referenced by expr::is_numeral().

◆ is_numeral_i()

bool is_numeral_i ( int & i) const
inline

Definition at line 884 of file z3++.h.

884{ bool r = Z3_get_numeral_int(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int(Z3_context c, Z3_ast v, int *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int....

Referenced by expr::get_numeral_int().

◆ is_numeral_i64()

bool is_numeral_i64 ( int64_t & i) const
inline

Definition at line 882 of file z3++.h.

882{ bool r = Z3_get_numeral_int64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, int64_t *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int64_t int....

Referenced by expr::as_int64(), and expr::get_numeral_int64().

◆ is_numeral_u()

bool is_numeral_u ( unsigned & i) const
inline

Definition at line 885 of file z3++.h.

885{ bool r = Z3_get_numeral_uint(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned int....

Referenced by expr::get_numeral_uint().

◆ is_numeral_u64()

bool is_numeral_u64 ( uint64_t & i) const
inline

Definition at line 883 of file z3++.h.

883{ bool r = Z3_get_numeral_uint64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, uint64_t *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine uint64_t int....

Referenced by expr::as_uint64(), and expr::get_numeral_uint64().

◆ is_or()

bool is_or ( ) const
inline

Definition at line 1298 of file z3++.h.

1298{ return is_app() && Z3_OP_OR == decl().decl_kind(); }
@ Z3_OP_OR
Definition z3_api.h:971

◆ is_quantifier()

bool is_quantifier ( ) const
inline

Return true if this expression is a quantifier.

Definition at line 907 of file z3++.h.

907{ return kind() == Z3_QUANTIFIER_AST; }
@ Z3_QUANTIFIER_AST
Definition z3_api.h:145

Referenced by expr::body().

◆ is_re()

bool is_re ( ) const
inline

Return true if this is a regular expression.

Definition at line 860 of file z3++.h.

860{ return get_sort().is_re(); }
bool is_re() const
Return true if this sort is a regular expression sort.
Definition z3++.h:716

◆ is_real()

bool is_real ( ) const
inline

Return true if this is a real expression.

Definition at line 832 of file z3++.h.

832{ return get_sort().is_real(); }
bool is_real() const
Return true if this sort is the Real sort.
Definition z3++.h:688

◆ is_relation()

bool is_relation ( ) const
inline

Return true if this is a Relation expression.

Definition at line 852 of file z3++.h.

852{ return get_sort().is_relation(); }
bool is_relation() const
Return true if this sort is a Relation sort.
Definition z3++.h:708

◆ is_seq()

bool is_seq ( ) const
inline

Return true if this is a sequence expression.

Definition at line 856 of file z3++.h.

856{ return get_sort().is_seq(); }
bool is_seq() const
Return true if this sort is a Sequence sort.
Definition z3++.h:712

Referenced by expr::operator[]().

◆ is_string_value()

bool is_string_value ( ) const
inline

Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string()

Definition at line 1157 of file z3++.h.

1157{ return Z3_is_string(ctx(), m_ast); }
bool Z3_API Z3_is_string(Z3_context c, Z3_ast s)
Determine if s is a string constant.

Referenced by expr::get_string(), and expr::get_u32string().

◆ is_true()

bool is_true ( ) const
inline

Definition at line 1294 of file z3++.h.

1294{ return is_app() && Z3_OP_TRUE == decl().decl_kind(); }
@ Z3_OP_TRUE
Definition z3_api.h:965

◆ is_var()

bool is_var ( ) const
inline

Return true if this expression is a variable.

Definition at line 925 of file z3++.h.

925{ return kind() == Z3_VAR_AST; }
@ Z3_VAR_AST
Definition z3_api.h:144

◆ is_well_sorted()

bool is_well_sorted ( ) const
inline

Return true if this expression is well sorted (aka type correct).

Definition at line 934 of file z3++.h.

934{ bool r = Z3_is_well_sorted(ctx(), m_ast); check_error(); return r; }
bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t)
Return true if the given expression t is well sorted.

◆ is_xor()

bool is_xor ( ) const
inline

Definition at line 1299 of file z3++.h.

1299{ return is_app() && Z3_OP_XOR == decl().decl_kind(); }
@ Z3_OP_XOR
Definition z3_api.h:973

◆ itos()

expr itos ( ) const
inline

Definition at line 1510 of file z3++.h.

1510 {
1511 Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
1512 check_error();
1513 return expr(ctx(), r);
1514 }
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.

◆ length()

expr length ( ) const
inline

Definition at line 1500 of file z3++.h.

1500 {
1501 Z3_ast r = Z3_mk_seq_length(ctx(), *this);
1502 check_error();
1503 return expr(ctx(), r);
1504 }
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)
Return the length of the sequence s.

Referenced by expr::extract().

◆ lo()

unsigned lo ( ) const
inline

Definition at line 1419 of file z3++.h.

1419{ assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }

Referenced by expr::extract(), expr::loop(), and expr::loop().

◆ loop() [1/2]

expr loop ( unsigned lo)
inline

create a looping regular expression.

Definition at line 1550 of file z3++.h.

1550 {
1551 Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
1552 check_error();
1553 return expr(ctx(), r);
1554 }
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...

◆ loop() [2/2]

expr loop ( unsigned lo,
unsigned hi )
inline

Definition at line 1555 of file z3++.h.

1555 {
1556 Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
1557 check_error();
1558 return expr(ctx(), r);
1559 }

◆ mk_from_ieee_bv()

expr mk_from_ieee_bv ( sort const & s) const
inline

Convert this IEEE BV into a fpa.

Definition at line 999 of file z3++.h.

999 {
1000 assert(is_bv());
1001 Z3_ast r = Z3_mk_fpa_to_fp_bv(ctx(), m_ast, s);
1002 check_error();
1003 return expr(ctx(), r);
1004 }
bool is_bv() const
Return true if this is a Bit-vector expression.
Definition z3++.h:840
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

◆ mk_is_inf()

expr mk_is_inf ( ) const
inline

Return Boolean expression to test for whether an FP expression is inf.

Definition at line 939 of file z3++.h.

939 {
940 assert(is_fpa());
941 Z3_ast r = Z3_mk_fpa_is_infinite(ctx(), m_ast);
942 check_error();
943 return expr(ctx(), r);
944 }
bool is_fpa() const
Return true if this is a FloatingPoint expression. .
Definition z3++.h:874
Z3_ast Z3_API Z3_mk_fpa_is_infinite(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number representing +oo or -oo.

◆ mk_is_nan()

expr mk_is_nan ( ) const
inline

Return Boolean expression to test for whether an FP expression is a NaN.

Definition at line 949 of file z3++.h.

949 {
950 assert(is_fpa());
951 Z3_ast r = Z3_mk_fpa_is_nan(ctx(), m_ast);
952 check_error();
953 return expr(ctx(), r);
954 }
Z3_ast Z3_API Z3_mk_fpa_is_nan(Z3_context c, Z3_ast t)
Predicate indicating whether t is a NaN.

◆ mk_is_normal()

expr mk_is_normal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a normal.

Definition at line 959 of file z3++.h.

959 {
960 assert(is_fpa());
961 Z3_ast r = Z3_mk_fpa_is_normal(ctx(), m_ast);
962 check_error();
963 return expr(ctx(), r);
964 }
Z3_ast Z3_API Z3_mk_fpa_is_normal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a normal floating-point number.

◆ mk_is_subnormal()

expr mk_is_subnormal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a subnormal.

Definition at line 969 of file z3++.h.

969 {
970 assert(is_fpa());
971 Z3_ast r = Z3_mk_fpa_is_subnormal(ctx(), m_ast);
972 check_error();
973 return expr(ctx(), r);
974 }
Z3_ast Z3_API Z3_mk_fpa_is_subnormal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a subnormal floating-point number.

◆ mk_is_zero()

expr mk_is_zero ( ) const
inline

Return Boolean expression to test for whether an FP expression is a zero.

Definition at line 979 of file z3++.h.

979 {
980 assert(is_fpa());
981 Z3_ast r = Z3_mk_fpa_is_zero(ctx(), m_ast);
982 check_error();
983 return expr(ctx(), r);
984 }
Z3_ast Z3_API Z3_mk_fpa_is_zero(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number with zero value, i.e., +zero or -zero.

◆ mk_to_ieee_bv()

expr mk_to_ieee_bv ( ) const
inline

Convert this fpa into an IEEE BV.

Definition at line 989 of file z3++.h.

989 {
990 assert(is_fpa());
991 Z3_ast r = Z3_mk_fpa_to_ieee_bv(ctx(), m_ast);
992 check_error();
993 return expr(ctx(), r);
994 }
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

◆ nth()

expr nth ( expr const & index) const
inline

Definition at line 1494 of file z3++.h.

1494 {
1495 check_context(*this, index);
1496 Z3_ast r = Z3_mk_seq_nth(ctx(), *this, index);
1497 check_error();
1498 return expr(ctx(), r);
1499 }
Z3_ast Z3_API Z3_mk_seq_nth(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the element positioned at position index. The function is under-specified if the inde...

Referenced by expr::operator[]().

◆ num_args()

unsigned num_args ( ) const
inline

Return the number of arguments in this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1200 of file z3++.h.

1200{ unsigned r = Z3_get_app_num_args(ctx(), *this); check_error(); return r; }
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)
Return the number of argument of an application. If t is an constant, then the number of arguments is...

Referenced by AstRef::__bool__(), ExprRef::arg(), FuncEntry::arg_value(), expr::args(), FuncEntry::as_list(), ExprRef::children(), expr::end(), and expr::is_const().

◆ numerator()

expr numerator ( ) const
inline

Definition at line 1137 of file z3++.h.

1137 {
1138 assert(is_numeral());
1139 Z3_ast r = Z3_get_numerator(ctx(), m_ast);
1140 check_error();
1141 return expr(ctx(),r);
1142 }
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::numerator_as_long().

◆ operator Z3_app()

operator Z3_app ( ) const
inline

Definition at line 1185 of file z3++.h.

1185{ assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }

◆ operator[]() [1/2]

expr operator[] ( expr const & index) const
inline

index operator defined on arrays and sequences.

Definition at line 1564 of file z3++.h.

1564 {
1565 assert(is_array() || is_seq());
1566 if (is_array()) {
1567 return select(*this, index);
1568 }
1569 return nth(index);
1570 }
bool is_array() const
Return true if this is a Array expression.
Definition z3++.h:844
expr nth(expr const &index) const
Definition z3++.h:1494
bool is_seq() const
Return true if this is a sequence expression.
Definition z3++.h:856
expr select(expr const &a, expr const &i)
forward declarations
Definition z3++.h:3954

◆ operator[]() [2/2]

expr operator[] ( expr_vector const & index) const
inline

Definition at line 1572 of file z3++.h.

1572 {
1573 return select(*this, index);
1574 }

◆ repeat()

expr repeat ( unsigned i) const
inline

Definition at line 1407 of file z3++.h.

1407{ Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.

◆ replace()

expr replace ( expr const & src,
expr const & dst ) const
inline

Definition at line 1471 of file z3++.h.

1471 {
1472 check_context(*this, src); check_context(src, dst);
1473 Z3_ast r = Z3_mk_seq_replace(ctx(), *this, src, dst);
1474 check_error();
1475 return expr(ctx(), r);
1476 }
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.

◆ rotate_left()

expr rotate_left ( unsigned i) const
inline

Definition at line 1405 of file z3++.h.

1405{ Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_left(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the left i times.

◆ rotate_right()

expr rotate_right ( unsigned i) const
inline

Definition at line 1406 of file z3++.h.

1406{ Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_right(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the right i times.

◆ sbvtos()

expr sbvtos ( ) const
inline

Definition at line 1520 of file z3++.h.

1520 {
1521 Z3_ast r = Z3_mk_sbv_to_str(ctx(), *this);
1522 check_error();
1523 return expr(ctx(), r);
1524 }
Z3_ast Z3_API Z3_mk_sbv_to_str(Z3_context c, Z3_ast s)
Signed bit-vector to string conversion.

◆ simplify() [1/2]

expr simplify ( ) const
inline

Return a simplified version of this expression.

Definition at line 1579 of file z3++.h.

1579{ Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.

◆ simplify() [2/2]

expr simplify ( params const & p) const
inline

Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier.

Definition at line 1583 of file z3++.h.

1583{ Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.

◆ stoi()

expr stoi ( ) const
inline

Definition at line 1505 of file z3++.h.

1505 {
1506 Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
1507 check_error();
1508 return expr(ctx(), r);
1509 }
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.

◆ substitute() [1/3]

expr substitute ( expr_vector const & dst)
inline

Apply substitution. Replace bound variables by expressions.

Definition at line 4242 of file z3++.h.

4242 {
4243 array<Z3_ast> _dst(dst.size());
4244 for (unsigned i = 0; i < dst.size(); ++i) {
4245 _dst[i] = dst[i];
4246 }
4247 Z3_ast r = Z3_substitute_vars(ctx(), m_ast, dst.size(), _dst.ptr());
4248 check_error();
4249 return expr(ctx(), r);
4250 }
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the variables in a with the expressions in to. For every i smaller than num_exprs,...

◆ substitute() [2/3]

expr substitute ( expr_vector const & src,
expr_vector const & dst )
inline

Apply substitution. Replace src expressions by dst.

Definition at line 4229 of file z3++.h.

4229 {
4230 assert(src.size() == dst.size());
4231 array<Z3_ast> _src(src.size());
4232 array<Z3_ast> _dst(dst.size());
4233 for (unsigned i = 0; i < src.size(); ++i) {
4234 _src[i] = src[i];
4235 _dst[i] = dst[i];
4236 }
4237 Z3_ast r = Z3_substitute(ctx(), m_ast, src.size(), _src.ptr(), _dst.ptr());
4238 check_error();
4239 return expr(ctx(), r);
4240 }
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....

◆ substitute() [3/3]

expr substitute ( func_decl_vector const & funs,
expr_vector const & bodies )
inline

Apply function substitution by macro definitions.

Definition at line 4252 of file z3++.h.

4252 {
4253 array<Z3_ast> _dst(dst.size());
4254 array<Z3_func_decl> _funs(funs.size());
4255 if (dst.size() != funs.size()) {
4256 Z3_THROW(exception("length of argument lists don't align"));
4257 return expr(ctx(), nullptr);
4258 }
4259 for (unsigned i = 0; i < dst.size(); ++i) {
4260 _dst[i] = dst[i];
4261 _funs[i] = funs[i];
4262 }
4263 Z3_ast r = Z3_substitute_funs(ctx(), m_ast, dst.size(), _funs.ptr(), _dst.ptr());
4264 check_error();
4265 return expr(ctx(), r);
4266 }
Z3_ast Z3_API Z3_substitute_funs(Z3_context c, Z3_ast a, unsigned num_funs, Z3_func_decl const from[], Z3_ast const to[])
Substitute functions in from with new expressions in to.

◆ ubvtos()

expr ubvtos ( ) const
inline

Definition at line 1515 of file z3++.h.

1515 {
1516 Z3_ast r = Z3_mk_ubv_to_str(ctx(), *this);
1517 check_error();
1518 return expr(ctx(), r);
1519 }
Z3_ast Z3_API Z3_mk_ubv_to_str(Z3_context c, Z3_ast s)
Unsigned bit-vector to string conversion.

◆ unit()

expr unit ( ) const
inline

Definition at line 1477 of file z3++.h.

1477 {
1478 Z3_ast r = Z3_mk_seq_unit(ctx(), *this);
1479 check_error();
1480 return expr(ctx(), r);
1481 }
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.

Friends And Related Symbol Documentation

◆ abs

expr abs ( expr const & a)
friend

Definition at line 1995 of file z3++.h.

1995 {
1996 Z3_ast r;
1997 if (a.is_int()) {
1998 expr zero = a.ctx().int_val(0);
1999 expr ge = a >= zero;
2000 expr na = -a;
2001 r = Z3_mk_ite(a.ctx(), ge, a, na);
2002 }
2003 else if (a.is_real()) {
2004 expr zero = a.ctx().real_val(0);
2005 expr ge = a >= zero;
2006 expr na = -a;
2007 r = Z3_mk_ite(a.ctx(), ge, a, na);
2008 }
2009 else {
2010 r = Z3_mk_fpa_abs(a.ctx(), a);
2011 }
2012 a.check_error();
2013 return expr(a.ctx(), r);
2014 }
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

◆ atleast

expr atleast ( expr_vector const & es,
unsigned bound )
friend

Definition at line 2430 of file z3++.h.

2430 {
2431 assert(es.size() > 0);
2432 context& ctx = es[0u].ctx();
2433 array<Z3_ast> _es(es);
2434 Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
2435 ctx.check_error();
2436 return expr(ctx, r);
2437 }
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ atmost

expr atmost ( expr_vector const & es,
unsigned bound )
friend

Definition at line 2422 of file z3++.h.

2422 {
2423 assert(es.size() > 0);
2424 context& ctx = es[0u].ctx();
2425 array<Z3_ast> _es(es);
2426 Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
2427 ctx.check_error();
2428 return expr(ctx, r);
2429 }
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ bv2int

expr bv2int ( expr const & a,
bool is_signed )
friend

bit-vector and integer conversions.

Definition at line 2233 of file z3++.h.

2233{ Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

◆ bvadd_no_overflow

expr bvadd_no_overflow ( expr const & a,
expr const & b,
bool is_signed )
friend

bit-vector overflow/underflow checks

Definition at line 2239 of file z3++.h.

2239 {
2240 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2241 }
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

◆ bvadd_no_underflow

expr bvadd_no_underflow ( expr const & a,
expr const & b )
friend

Definition at line 2242 of file z3++.h.

2242 {
2243 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2244 }
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ bvmul_no_overflow

expr bvmul_no_overflow ( expr const & a,
expr const & b,
bool is_signed )
friend

Definition at line 2257 of file z3++.h.

2257 {
2258 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2259 }
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ bvmul_no_underflow

expr bvmul_no_underflow ( expr const & a,
expr const & b )
friend

Definition at line 2260 of file z3++.h.

2260 {
2261 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2262 }
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ bvneg_no_overflow

expr bvneg_no_overflow ( expr const & a)
friend

Definition at line 2254 of file z3++.h.

2254 {
2255 Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
2256 }
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ bvredand

expr bvredand ( expr const & a)
friend

Definition at line 1989 of file z3++.h.

1989 {
1990 assert(a.is_bv());
1991 Z3_ast r = Z3_mk_bvredand(a.ctx(), a);
1992 a.check_error();
1993 return expr(a.ctx(), r);
1994 }
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.

◆ bvredor

expr bvredor ( expr const & a)
friend

Definition at line 1983 of file z3++.h.

1983 {
1984 assert(a.is_bv());
1985 Z3_ast r = Z3_mk_bvredor(a.ctx(), a);
1986 a.check_error();
1987 return expr(a.ctx(), r);
1988 }
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.

◆ bvsdiv_no_overflow

expr bvsdiv_no_overflow ( expr const & a,
expr const & b )
friend

Definition at line 2251 of file z3++.h.

2251 {
2252 check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2253 }
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ bvsub_no_overflow

expr bvsub_no_overflow ( expr const & a,
expr const & b )
friend

Definition at line 2245 of file z3++.h.

2245 {
2246 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2247 }
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ bvsub_no_underflow

expr bvsub_no_underflow ( expr const & a,
expr const & b,
bool is_signed )
friend

Definition at line 2248 of file z3++.h.

2248 {
2249 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2250 }
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ concat [1/2]

expr concat ( expr const & a,
expr const & b )
friend

Definition at line 2456 of file z3++.h.

2456 {
2457 check_context(a, b);
2458 Z3_ast r;
2459 if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
2460 Z3_ast _args[2] = { a, b };
2461 r = Z3_mk_seq_concat(a.ctx(), 2, _args);
2462 }
2463 else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
2464 Z3_ast _args[2] = { a, b };
2465 r = Z3_mk_re_concat(a.ctx(), 2, _args);
2466 }
2467 else {
2468 r = Z3_mk_concat(a.ctx(), a, b);
2469 }
2470 a.ctx().check_error();
2471 return expr(a.ctx(), r);
2472 }
bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s)
Check if s is a sequence sort.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s)
Check if s is a regular expression sort.

◆ concat [2/2]

expr concat ( expr_vector const & args)
friend

Definition at line 2474 of file z3++.h.

2474 {
2475 Z3_ast r;
2476 assert(args.size() > 0);
2477 if (args.size() == 1) {
2478 return args[0u];
2479 }
2480 context& ctx = args[0u].ctx();
2481 array<Z3_ast> _args(args);
2482 if (Z3_is_seq_sort(ctx, args[0u].get_sort())) {
2483 r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
2484 }
2485 else if (Z3_is_re_sort(ctx, args[0u].get_sort())) {
2486 r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
2487 }
2488 else {
2489 r = _args[args.size()-1];
2490 for (unsigned i = args.size()-1; i > 0; ) {
2491 --i;
2492 r = Z3_mk_concat(ctx, _args[i], r);
2493 ctx.check_error();
2494 }
2495 }
2496 ctx.check_error();
2497 return expr(ctx, r);
2498 }
unsigned size() const
Definition z3++.h:598
expr_vector args() const
Return a vector of all the arguments of this application. This method assumes the expression is an ap...
Definition z3++.h:1215

◆ distinct

expr distinct ( expr_vector const & args)
friend

Definition at line 2447 of file z3++.h.

2447 {
2448 assert(args.size() > 0);
2449 context& ctx = args[0u].ctx();
2450 array<Z3_ast> _args(args);
2451 Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
2452 ctx.check_error();
2453 return expr(ctx, r);
2454 }
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

◆ fma

expr fma ( expr const & a,
expr const & b,
expr const & c,
expr const & rm )
friend

FloatingPoint fused multiply-add.

Definition at line 2031 of file z3++.h.

2031 {
2032 check_context(a, b); check_context(a, c); check_context(a, rm);
2033 assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
2034 Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
2035 a.check_error();
2036 return expr(a.ctx(), r);
2037 }
Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Floating-point fused multiply-add.

◆ fp_eq

expr fp_eq ( expr const & a,
expr const & b )
friend

Definition at line 2022 of file z3++.h.

2022 {
2023 check_context(a, b);
2024 assert(a.is_fpa());
2025 Z3_ast r = Z3_mk_fpa_eq(a.ctx(), a, b);
2026 a.check_error();
2027 return expr(a.ctx(), r);
2028 }
Z3_ast Z3_API Z3_mk_fpa_eq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point equality.

◆ fpa_fp

expr fpa_fp ( expr const & sgn,
expr const & exp,
expr const & sig )
friend

Create an expression of FloatingPoint sort from three bit-vector expressions.

Definition at line 2039 of file z3++.h.

2039 {
2040 check_context(sgn, exp); check_context(exp, sig);
2041 assert(sgn.is_bv() && exp.is_bv() && sig.is_bv());
2042 Z3_ast r = Z3_mk_fpa_fp(sgn.ctx(), sgn, exp, sig);
2043 sgn.check_error();
2044 return expr(sgn.ctx(), r);
2045 }
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.

◆ fpa_to_fpa

expr fpa_to_fpa ( expr const & t,
sort s )
friend

Conversion of a floating-point term into another floating-point.

Definition at line 2075 of file z3++.h.

2075 {
2076 assert(t.is_fpa());
2077 Z3_ast r = Z3_mk_fpa_to_fp_float(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2078 t.check_error();
2079 return expr(t.ctx(), r);
2080 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

◆ fpa_to_sbv

expr fpa_to_sbv ( expr const & t,
unsigned sz )
friend

Conversion of a floating-point term into a signed bit-vector.

Definition at line 2047 of file z3++.h.

2047 {
2048 assert(t.is_fpa());
2049 Z3_ast r = Z3_mk_fpa_to_sbv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2050 t.check_error();
2051 return expr(t.ctx(), r);
2052 }
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.

◆ fpa_to_ubv

expr fpa_to_ubv ( expr const & t,
unsigned sz )
friend

Conversion of a floating-point term into an unsigned bit-vector.

Definition at line 2054 of file z3++.h.

2054 {
2055 assert(t.is_fpa());
2056 Z3_ast r = Z3_mk_fpa_to_ubv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2057 t.check_error();
2058 return expr(t.ctx(), r);
2059 }
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.

◆ implies [1/3]

expr implies ( bool a,
expr const & b )
friend

Definition at line 1634 of file z3++.h.

1634{ return implies(b.ctx().bool_val(a), b); }
friend expr implies(expr const &a, expr const &b)
Definition z3++.h:1629

◆ implies [2/3]

expr implies ( expr const & a,
bool b )
friend

Definition at line 1633 of file z3++.h.

1633{ return implies(a, a.ctx().bool_val(b)); }

◆ implies [3/3]

expr implies ( expr const & a,
expr const & b )
friend

Definition at line 1629 of file z3++.h.

1629 {
1630 assert(a.is_bool() && b.is_bool());
1632 }
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
#define _Z3_MK_BIN_(a, b, binop)
Definition z3++.h:1622

◆ int2bv

expr int2bv ( unsigned n,
expr const & a )
friend

Definition at line 2234 of file z3++.h.

2234{ Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ is_int

expr is_int ( expr const & e)
friend

Definition at line 1677 of file z3++.h.

1677{ _Z3_MK_UN_(e, Z3_mk_is_int); }
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
#define _Z3_MK_UN_(a, mkun)
Definition z3++.h:1669

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ ite

expr ite ( expr const & c,
expr const & t,
expr const & e )
friend

Create the if-then-else expression ite(c, t, e)

Precondition
c.is_bool()

Definition at line 2094 of file z3++.h.

2094 {
2095 check_context(c, t); check_context(c, e);
2096 assert(c.is_bool());
2097 Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
2098 c.check_error();
2099 return expr(c.ctx(), r);
2100 }

◆ max

expr max ( expr const & a,
expr const & b )
friend

Definition at line 1967 of file z3++.h.

1967 {
1968 check_context(a, b);
1969 Z3_ast r;
1970 if (a.is_arith()) {
1971 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
1972 }
1973 else if (a.is_bv()) {
1974 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
1975 }
1976 else {
1977 assert(a.is_fpa());
1978 r = Z3_mk_fpa_max(a.ctx(), a, b);
1979 }
1980 a.check_error();
1981 return expr(a.ctx(), r);
1982 }
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2)
Maximum of floating-point numbers.
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.

◆ min

expr min ( expr const & a,
expr const & b )
friend

Definition at line 1951 of file z3++.h.

1951 {
1952 check_context(a, b);
1953 Z3_ast r;
1954 if (a.is_arith()) {
1955 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
1956 }
1957 else if (a.is_bv()) {
1958 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
1959 }
1960 else {
1961 assert(a.is_fpa());
1962 r = Z3_mk_fpa_min(a.ctx(), a, b);
1963 }
1964 a.check_error();
1965 return expr(a.ctx(), r);
1966 }
Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2)
Minimum of floating-point numbers.

◆ mk_and

expr mk_and ( expr_vector const & args)
friend

Definition at line 2534 of file z3++.h.

2534 {
2535 array<Z3_ast> _args(args);
2536 Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
2537 args.check_error();
2538 return expr(args.ctx(), r);
2539 }
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

◆ mk_or

expr mk_or ( expr_vector const & args)
friend

Definition at line 2528 of file z3++.h.

2528 {
2529 array<Z3_ast> _args(args);
2530 Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
2531 args.check_error();
2532 return expr(args.ctx(), r);
2533 }
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

◆ mk_xor

expr mk_xor ( expr_vector const & args)
friend

Definition at line 2540 of file z3++.h.

2540 {
2541 if (args.empty())
2542 return args.ctx().bool_val(false);
2543 expr r = args[0u];
2544 for (unsigned i = 1; i < args.size(); ++i)
2545 r = r ^ args[i];
2546 return r;
2547 }
bool empty() const
Definition z3++.h:604
expr bool_val(bool b)
Definition z3++.h:3791

◆ mod [1/3]

expr mod ( expr const & a,
expr const & b )
friend

Definition at line 1641 of file z3++.h.

1641 {
1642 if (a.is_bv()) {
1643 _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
1644 }
1645 else {
1646 _Z3_MK_BIN_(a, b, Z3_mk_mod);
1647 }
1648 }
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

◆ mod [2/3]

expr mod ( expr const & a,
int b )
friend

Definition at line 1649 of file z3++.h.

1649{ return mod(a, a.ctx().num_val(b, a.get_sort())); }
friend expr mod(expr const &a, expr const &b)
Definition z3++.h:1641

◆ mod [3/3]

expr mod ( int a,
expr const & b )
friend

Definition at line 1650 of file z3++.h.

1650{ return mod(b.ctx().num_val(a, b.get_sort()), b); }

◆ nand

expr nand ( expr const & a,
expr const & b )
friend

Definition at line 1948 of file z3++.h.

1948{ if (a.is_bool()) return !(a && b); check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nand.

◆ nor

expr nor ( expr const & a,
expr const & b )
friend

Definition at line 1949 of file z3++.h.

1949{ if (a.is_bool()) return !(a || b); check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nor.

◆ operator!

expr operator! ( expr const & a)
friend

Return an expression representing not(a).

Precondition
a.is_bool()

Definition at line 1675 of file z3++.h.

1675{ assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

◆ operator!= [1/3]

expr operator!= ( expr const & a,
expr const & b )
friend

Definition at line 1717 of file z3++.h.

1717 {
1718 check_context(a, b);
1719 Z3_ast args[2] = { a, b };
1720 Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
1721 a.check_error();
1722 return expr(a.ctx(), r);
1723 }

◆ operator!= [2/3]

expr operator!= ( expr const & a,
int b )
friend

Definition at line 1724 of file z3++.h.

1724{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }

◆ operator!= [3/3]

expr operator!= ( int a,
expr const & b )
friend

Definition at line 1725 of file z3++.h.

1725{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

◆ operator& [1/3]

expr operator& ( expr const & a,
expr const & b )
friend

Definition at line 1936 of file z3++.h.

1936{ if (a.is_bool()) return a && b; check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ operator& [2/3]

expr operator& ( expr const & a,
int b )
friend

Definition at line 1937 of file z3++.h.

1937{ return a & a.ctx().num_val(b, a.get_sort()); }

◆ operator& [3/3]

expr operator& ( int a,
expr const & b )
friend

Definition at line 1938 of file z3++.h.

1938{ return b.ctx().num_val(a, b.get_sort()) & b; }

◆ operator&& [1/3]

expr operator&& ( bool a,
expr const & b )
friend

Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1691 of file z3++.h.

1691{ return b.ctx().bool_val(a) && b; }

◆ operator&& [2/3]

expr operator&& ( expr const & a,
bool b )
friend

Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1690 of file z3++.h.

1690{ return a && a.ctx().bool_val(b); }

◆ operator&& [3/3]

expr operator&& ( expr const & a,
expr const & b )
friend

Return an expression representing a and b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1681 of file z3++.h.

1681 {
1682 check_context(a, b);
1683 assert(a.is_bool() && b.is_bool());
1684 Z3_ast args[2] = { a, b };
1685 Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
1686 a.check_error();
1687 return expr(a.ctx(), r);
1688 }

◆ operator* [1/3]

expr operator* ( expr const & a,
expr const & b )
friend

Definition at line 1759 of file z3++.h.

1759 {
1760 check_context(a, b);
1761 Z3_ast r = 0;
1762 if (a.is_arith() && b.is_arith()) {
1763 Z3_ast args[2] = { a, b };
1764 r = Z3_mk_mul(a.ctx(), 2, args);
1765 }
1766 else if (a.is_bv() && b.is_bv()) {
1767 r = Z3_mk_bvmul(a.ctx(), a, b);
1768 }
1769 else if (a.is_fpa() && b.is_fpa()) {
1770 r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1771 }
1772 else {
1773 // operator is not supported by given arguments.
1774 assert(false);
1775 }
1776 a.check_error();
1777 return expr(a.ctx(), r);
1778 }
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point multiplication.

◆ operator* [2/3]

expr operator* ( expr const & a,
int b )
friend

Definition at line 1779 of file z3++.h.

1779{ return a * a.ctx().num_val(b, a.get_sort()); }

◆ operator* [3/3]

expr operator* ( int a,
expr const & b )
friend

Definition at line 1780 of file z3++.h.

1780{ return b.ctx().num_val(a, b.get_sort()) * b; }

◆ operator+ [1/3]

expr operator+ ( expr const & a,
expr const & b )
friend

Definition at line 1729 of file z3++.h.

1729 {
1730 check_context(a, b);
1731 Z3_ast r = 0;
1732 if (a.is_arith() && b.is_arith()) {
1733 Z3_ast args[2] = { a, b };
1734 r = Z3_mk_add(a.ctx(), 2, args);
1735 }
1736 else if (a.is_bv() && b.is_bv()) {
1737 r = Z3_mk_bvadd(a.ctx(), a, b);
1738 }
1739 else if (a.is_seq() && b.is_seq()) {
1740 return concat(a, b);
1741 }
1742 else if (a.is_re() && b.is_re()) {
1743 Z3_ast _args[2] = { a, b };
1744 r = Z3_mk_re_union(a.ctx(), 2, _args);
1745 }
1746 else if (a.is_fpa() && b.is_fpa()) {
1747 r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1748 }
1749 else {
1750 // operator is not supported by given arguments.
1751 assert(false);
1752 }
1753 a.check_error();
1754 return expr(a.ctx(), r);
1755 }
friend expr concat(expr const &a, expr const &b)
Definition z3++.h:2456
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point addition.
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].

◆ operator+ [2/3]

expr operator+ ( expr const & a,
int b )
friend

Definition at line 1756 of file z3++.h.

1756{ return a + a.ctx().num_val(b, a.get_sort()); }

◆ operator+ [3/3]

expr operator+ ( int a,
expr const & b )
friend

Definition at line 1757 of file z3++.h.

1757{ return b.ctx().num_val(a, b.get_sort()) + b; }

◆ operator- [1/4]

expr operator- ( expr const & a)
friend

Definition at line 1825 of file z3++.h.

1825 {
1826 Z3_ast r = 0;
1827 if (a.is_arith()) {
1828 r = Z3_mk_unary_minus(a.ctx(), a);
1829 }
1830 else if (a.is_bv()) {
1831 r = Z3_mk_bvneg(a.ctx(), a);
1832 }
1833 else if (a.is_fpa()) {
1834 r = Z3_mk_fpa_neg(a.ctx(), a);
1835 }
1836 else {
1837 // operator is not supported by given arguments.
1838 assert(false);
1839 }
1840 a.check_error();
1841 return expr(a.ctx(), r);
1842 }
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.

◆ operator- [2/4]

expr operator- ( expr const & a,
expr const & b )
friend

Definition at line 1844 of file z3++.h.

1844 {
1845 check_context(a, b);
1846 Z3_ast r = 0;
1847 if (a.is_arith() && b.is_arith()) {
1848 Z3_ast args[2] = { a, b };
1849 r = Z3_mk_sub(a.ctx(), 2, args);
1850 }
1851 else if (a.is_bv() && b.is_bv()) {
1852 r = Z3_mk_bvsub(a.ctx(), a, b);
1853 }
1854 else if (a.is_fpa() && b.is_fpa()) {
1855 r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1856 }
1857 else {
1858 // operator is not supported by given arguments.
1859 assert(false);
1860 }
1861 a.check_error();
1862 return expr(a.ctx(), r);
1863 }
Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point subtraction.
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] - ... - args[num_args - 1].

◆ operator- [3/4]

expr operator- ( expr const & a,
int b )
friend

Definition at line 1864 of file z3++.h.

1864{ return a - a.ctx().num_val(b, a.get_sort()); }

◆ operator- [4/4]

expr operator- ( int a,
expr const & b )
friend

Definition at line 1865 of file z3++.h.

1865{ return b.ctx().num_val(a, b.get_sort()) - b; }

◆ operator/ [1/3]

expr operator/ ( expr const & a,
expr const & b )
friend

Definition at line 1803 of file z3++.h.

1803 {
1804 check_context(a, b);
1805 Z3_ast r = 0;
1806 if (a.is_arith() && b.is_arith()) {
1807 r = Z3_mk_div(a.ctx(), a, b);
1808 }
1809 else if (a.is_bv() && b.is_bv()) {
1810 r = Z3_mk_bvsdiv(a.ctx(), a, b);
1811 }
1812 else if (a.is_fpa() && b.is_fpa()) {
1813 r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1814 }
1815 else {
1816 // operator is not supported by given arguments.
1817 assert(false);
1818 }
1819 a.check_error();
1820 return expr(a.ctx(), r);
1821 }
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point division.

◆ operator/ [2/3]

expr operator/ ( expr const & a,
int b )
friend

Definition at line 1822 of file z3++.h.

1822{ return a / a.ctx().num_val(b, a.get_sort()); }

◆ operator/ [3/3]

expr operator/ ( int a,
expr const & b )
friend

Definition at line 1823 of file z3++.h.

1823{ return b.ctx().num_val(a, b.get_sort()) / b; }

◆ operator< [1/3]

expr operator< ( expr const & a,
expr const & b )
friend

Definition at line 1892 of file z3++.h.

1892 {
1893 check_context(a, b);
1894 Z3_ast r = 0;
1895 if (a.is_arith() && b.is_arith()) {
1896 r = Z3_mk_lt(a.ctx(), a, b);
1897 }
1898 else if (a.is_bv() && b.is_bv()) {
1899 r = Z3_mk_bvslt(a.ctx(), a, b);
1900 }
1901 else if (a.is_fpa() && b.is_fpa()) {
1902 r = Z3_mk_fpa_lt(a.ctx(), a, b);
1903 }
1904 else {
1905 // operator is not supported by given arguments.
1906 assert(false);
1907 }
1908 a.check_error();
1909 return expr(a.ctx(), r);
1910 }
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than.

◆ operator< [2/3]

expr operator< ( expr const & a,
int b )
friend

Definition at line 1911 of file z3++.h.

1911{ return a < a.ctx().num_val(b, a.get_sort()); }

◆ operator< [3/3]

expr operator< ( int a,
expr const & b )
friend

Definition at line 1912 of file z3++.h.

1912{ return b.ctx().num_val(a, b.get_sort()) < b; }

◆ operator<= [1/3]

expr operator<= ( expr const & a,
expr const & b )
friend

Definition at line 1867 of file z3++.h.

1867 {
1868 check_context(a, b);
1869 Z3_ast r = 0;
1870 if (a.is_arith() && b.is_arith()) {
1871 r = Z3_mk_le(a.ctx(), a, b);
1872 }
1873 else if (a.is_bv() && b.is_bv()) {
1874 r = Z3_mk_bvsle(a.ctx(), a, b);
1875 }
1876 else if (a.is_fpa() && b.is_fpa()) {
1877 r = Z3_mk_fpa_leq(a.ctx(), a, b);
1878 }
1879 else {
1880 // operator is not supported by given arguments.
1881 assert(false);
1882 }
1883 a.check_error();
1884 return expr(a.ctx(), r);
1885 }
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than or equal.

◆ operator<= [2/3]

expr operator<= ( expr const & a,
int b )
friend

Definition at line 1886 of file z3++.h.

1886{ return a <= a.ctx().num_val(b, a.get_sort()); }

◆ operator<= [3/3]

expr operator<= ( int a,
expr const & b )
friend

Definition at line 1887 of file z3++.h.

1887{ return b.ctx().num_val(a, b.get_sort()) <= b; }

◆ operator== [1/3]

expr operator== ( expr const & a,
expr const & b )
friend

Definition at line 1706 of file z3++.h.

1706 {
1707 check_context(a, b);
1708 Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
1709 a.check_error();
1710 return expr(a.ctx(), r);
1711 }
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.

◆ operator== [2/3]

expr operator== ( expr const & a,
int b )
friend

Definition at line 1712 of file z3++.h.

1712{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }

◆ operator== [3/3]

expr operator== ( int a,
expr const & b )
friend

Definition at line 1713 of file z3++.h.

1713{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

◆ operator> [1/3]

expr operator> ( expr const & a,
expr const & b )
friend

Definition at line 1914 of file z3++.h.

1914 {
1915 check_context(a, b);
1916 Z3_ast r = 0;
1917 if (a.is_arith() && b.is_arith()) {
1918 r = Z3_mk_gt(a.ctx(), a, b);
1919 }
1920 else if (a.is_bv() && b.is_bv()) {
1921 r = Z3_mk_bvsgt(a.ctx(), a, b);
1922 }
1923 else if (a.is_fpa() && b.is_fpa()) {
1924 r = Z3_mk_fpa_gt(a.ctx(), a, b);
1925 }
1926 else {
1927 // operator is not supported by given arguments.
1928 assert(false);
1929 }
1930 a.check_error();
1931 return expr(a.ctx(), r);
1932 }
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than.
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.

◆ operator> [2/3]

expr operator> ( expr const & a,
int b )
friend

Definition at line 1933 of file z3++.h.

1933{ return a > a.ctx().num_val(b, a.get_sort()); }

◆ operator> [3/3]

expr operator> ( int a,
expr const & b )
friend

Definition at line 1934 of file z3++.h.

1934{ return b.ctx().num_val(a, b.get_sort()) > b; }

◆ operator>= [1/3]

expr operator>= ( expr const & a,
expr const & b )
friend

Definition at line 1783 of file z3++.h.

1783 {
1784 check_context(a, b);
1785 Z3_ast r = 0;
1786 if (a.is_arith() && b.is_arith()) {
1787 r = Z3_mk_ge(a.ctx(), a, b);
1788 }
1789 else if (a.is_bv() && b.is_bv()) {
1790 r = Z3_mk_bvsge(a.ctx(), a, b);
1791 }
1792 else if (a.is_fpa() && b.is_fpa()) {
1793 r = Z3_mk_fpa_geq(a.ctx(), a, b);
1794 }
1795 else {
1796 // operator is not supported by given arguments.
1797 assert(false);
1798 }
1799 a.check_error();
1800 return expr(a.ctx(), r);
1801 }
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_geq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than or equal.

◆ operator>= [2/3]

expr operator>= ( expr const & a,
int b )
friend

Definition at line 1889 of file z3++.h.

1889{ return a >= a.ctx().num_val(b, a.get_sort()); }

◆ operator>= [3/3]

expr operator>= ( int a,
expr const & b )
friend

Definition at line 1890 of file z3++.h.

1890{ return b.ctx().num_val(a, b.get_sort()) >= b; }

◆ operator^ [1/3]

expr operator^ ( expr const & a,
expr const & b )
friend

Definition at line 1940 of file z3++.h.

1940{ check_context(a, b); Z3_ast r = a.is_bool() ? Z3_mk_xor(a.ctx(), a, b) : Z3_mk_bvxor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.

◆ operator^ [2/3]

expr operator^ ( expr const & a,
int b )
friend

Definition at line 1941 of file z3++.h.

1941{ return a ^ a.ctx().num_val(b, a.get_sort()); }

◆ operator^ [3/3]

expr operator^ ( int a,
expr const & b )
friend

Definition at line 1942 of file z3++.h.

1942{ return b.ctx().num_val(a, b.get_sort()) ^ b; }

◆ operator| [1/3]

expr operator| ( expr const & a,
expr const & b )
friend

Definition at line 1944 of file z3++.h.

1944{ if (a.is_bool()) return a || b; check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ operator| [2/3]

expr operator| ( expr const & a,
int b )
friend

Definition at line 1945 of file z3++.h.

1945{ return a | a.ctx().num_val(b, a.get_sort()); }

◆ operator| [3/3]

expr operator| ( int a,
expr const & b )
friend

Definition at line 1946 of file z3++.h.

1946{ return b.ctx().num_val(a, b.get_sort()) | b; }

◆ operator|| [1/3]

expr operator|| ( bool a,
expr const & b )
friend

Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1704 of file z3++.h.

1704{ return b.ctx().bool_val(a) || b; }

◆ operator|| [2/3]

expr operator|| ( expr const & a,
bool b )
friend

Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1702 of file z3++.h.

1702{ return a || a.ctx().bool_val(b); }

◆ operator|| [3/3]

expr operator|| ( expr const & a,
expr const & b )
friend

Return an expression representing a or b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1693 of file z3++.h.

1693 {
1694 check_context(a, b);
1695 assert(a.is_bool() && b.is_bool());
1696 Z3_ast args[2] = { a, b };
1697 Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
1698 a.check_error();
1699 return expr(a.ctx(), r);
1700 }

◆ operator~

expr operator~ ( expr const & a)
friend

Definition at line 2029 of file z3++.h.

2029{ Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ pbeq

expr pbeq ( expr_vector const & es,
int const * coeffs,
int bound )
friend

Definition at line 2414 of file z3++.h.

2414 {
2415 assert(es.size() > 0);
2416 context& ctx = es[0u].ctx();
2417 array<Z3_ast> _es(es);
2418 Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
2419 ctx.check_error();
2420 return expr(ctx, r);
2421 }
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pbge

expr pbge ( expr_vector const & es,
int const * coeffs,
int bound )
friend

Definition at line 2406 of file z3++.h.

2406 {
2407 assert(es.size() > 0);
2408 context& ctx = es[0u].ctx();
2409 array<Z3_ast> _es(es);
2410 Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
2411 ctx.check_error();
2412 return expr(ctx, r);
2413 }
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pble

expr pble ( expr_vector const & es,
int const * coeffs,
int bound )
friend

Definition at line 2398 of file z3++.h.

2398 {
2399 assert(es.size() > 0);
2400 context& ctx = es[0u].ctx();
2401 array<Z3_ast> _es(es);
2402 Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
2403 ctx.check_error();
2404 return expr(ctx, r);
2405 }
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pw [1/3]

expr pw ( expr const & a,
expr const & b )
friend

Definition at line 1637 of file z3++.h.

1637{ _Z3_MK_BIN_(a, b, Z3_mk_power); }
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ pw [2/3]

expr pw ( expr const & a,
int b )
friend

Definition at line 1638 of file z3++.h.

1638{ return pw(a, a.ctx().num_val(b, a.get_sort())); }
friend expr pw(expr const &a, expr const &b)
Definition z3++.h:1637

◆ pw [3/3]

expr pw ( int a,
expr const & b )
friend

Definition at line 1639 of file z3++.h.

1639{ return pw(b.ctx().num_val(a, b.get_sort()), b); }

◆ range

expr range ( expr const & lo,
expr const & hi )
friend

Definition at line 4136 of file z3++.h.

4136 {
4138 Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
4139 lo.check_error();
4140 return expr(lo.ctx(), r);
4141 }
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

◆ rem [1/3]

expr rem ( expr const & a,
expr const & b )
friend

Definition at line 1657 of file z3++.h.

1657 {
1658 if (a.is_fpa() && b.is_fpa()) {
1660 } else {
1661 _Z3_MK_BIN_(a, b, Z3_mk_rem);
1662 }
1663 }
Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point remainder.
Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 rem arg2.

◆ rem [2/3]

expr rem ( expr const & a,
int b )
friend

Definition at line 1664 of file z3++.h.

1664{ return rem(a, a.ctx().num_val(b, a.get_sort())); }
friend expr rem(expr const &a, expr const &b)
Definition z3++.h:1657

◆ rem [3/3]

expr rem ( int a,
expr const & b )
friend

Definition at line 1665 of file z3++.h.

1665{ return rem(b.ctx().num_val(a, b.get_sort()), b); }

◆ round_fpa_to_closest_integer

expr round_fpa_to_closest_integer ( expr const & t)
friend

Round a floating-point term into its closest integer.

Definition at line 2082 of file z3++.h.

2082 {
2083 assert(t.is_fpa());
2084 Z3_ast r = Z3_mk_fpa_round_to_integral(t.ctx(), t.ctx().fpa_rounding_mode(), t);
2085 t.check_error();
2086 return expr(t.ctx(), r);
2087 }
Z3_ast Z3_API Z3_mk_fpa_round_to_integral(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point roundToIntegral. Rounds a floating-point number to the closest integer,...

◆ sbv_to_fpa

expr sbv_to_fpa ( expr const & t,
sort s )
friend

Conversion of a signed bit-vector term into a floating-point.

Definition at line 2061 of file z3++.h.

2061 {
2062 assert(t.is_bv());
2063 Z3_ast r = Z3_mk_fpa_to_fp_signed(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2064 t.check_error();
2065 return expr(t.ctx(), r);
2066 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

◆ sqrt

expr sqrt ( expr const & a,
expr const & rm )
friend

Definition at line 2015 of file z3++.h.

2015 {
2016 check_context(a, rm);
2017 assert(a.is_fpa());
2018 Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
2019 a.check_error();
2020 return expr(a.ctx(), r);
2021 }
Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point square root.

◆ sum

expr sum ( expr_vector const & args)
friend

Definition at line 2438 of file z3++.h.

2438 {
2439 assert(args.size() > 0);
2440 context& ctx = args[0u].ctx();
2441 array<Z3_ast> _args(args);
2442 Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
2443 ctx.check_error();
2444 return expr(ctx, r);
2445 }

◆ ubv_to_fpa

expr ubv_to_fpa ( expr const & t,
sort s )
friend

Conversion of an unsigned bit-vector term into a floating-point.

Definition at line 2068 of file z3++.h.

2068 {
2069 assert(t.is_bv());
2070 Z3_ast r = Z3_mk_fpa_to_fp_unsigned(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2071 t.check_error();
2072 return expr(t.ctx(), r);
2073 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

◆ xnor

expr xnor ( expr const & a,
expr const & b )
friend

Definition at line 1950 of file z3++.h.

1950{ if (a.is_bool()) return !(a ^ b); check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise xnor.