Z3
 
Loading...
Searching...
No Matches
AlgebraicNumRef Class Reference
+ Inheritance diagram for AlgebraicNumRef:

Public Member Functions

 approx (self, precision=10)
 
 as_decimal (self, prec)
 
 poly (self)
 
 index (self)
 
- Public Member Functions inherited from ArithRef
 sort (self)
 
 is_int (self)
 
 is_real (self)
 
 __add__ (self, other)
 
 __radd__ (self, other)
 
 __mul__ (self, other)
 
 __rmul__ (self, other)
 
 __sub__ (self, other)
 
 __rsub__ (self, other)
 
 __pow__ (self, other)
 
 __rpow__ (self, other)
 
 __div__ (self, other)
 
 __truediv__ (self, other)
 
 __rdiv__ (self, other)
 
 __rtruediv__ (self, other)
 
 __mod__ (self, other)
 
 __rmod__ (self, other)
 
 __neg__ (self)
 
 __pos__ (self)
 
 __le__ (self, other)
 
 __lt__ (self, other)
 
 __gt__ (self, other)
 
 __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
 as_ast (self)
 
 get_id (self)
 
 sort_kind (self)
 
 __eq__ (self, other)
 
 __hash__ (self)
 
 __ne__ (self, other)
 
 params (self)
 
 decl (self)
 
 num_args (self)
 
 arg (self, idx)
 
 children (self)
 
 from_string (self, s)
 
 serialize (self)
 
- Public Member Functions inherited from AstRef
 __init__ (self, ast, ctx=None)
 
 __del__ (self)
 
 __deepcopy__ (self, memo={})
 
 __str__ (self)
 
 __repr__ (self)
 
 __nonzero__ (self)
 
 __bool__ (self)
 
 sexpr (self)
 
 ctx_ref (self)
 
 eq (self, other)
 
 translate (self, target)
 
 __copy__ (self)
 
 hash (self)
 
- Public Member Functions inherited from Z3PPObject
 use_pp (self)
 

Data Fields

 ctx
 
- Data Fields inherited from ArithRef
 ctx = _coerce_exprs(self, other)
 
- Data Fields inherited from ExprRef
 ctx
 
- Data Fields inherited from AstRef
 ast = ast
 
 ctx = _get_ctx(ctx)
 

Additional Inherited Members

- Protected Member Functions inherited from Z3PPObject
 _repr_html_ (self)
 

Detailed Description

Algebraic irrational values.

Definition at line 3139 of file z3py.py.

Member Function Documentation

◆ approx()

approx ( self,
precision = 10 )
Return a Z3 rational number that approximates the algebraic number `self`.
The result `r` is such that |r - self| <= 1/10^precision

>>> x = simplify(Sqrt(2))
>>> x.approx(20)
6838717160008073720548335/4835703278458516698824704
>>> x.approx(5)
2965821/2097152

Definition at line 3142 of file z3py.py.

3142 def approx(self, precision=10):
3143 """Return a Z3 rational number that approximates the algebraic number `self`.
3144 The result `r` is such that |r - self| <= 1/10^precision
3145
3146 >>> x = simplify(Sqrt(2))
3147 >>> x.approx(20)
3148 6838717160008073720548335/4835703278458516698824704
3149 >>> x.approx(5)
3150 2965821/2097152
3151 """
3152 return RatNumRef(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
3153
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...

◆ as_decimal()

as_decimal ( self,
prec )
Return a string representation of the algebraic number `self` in decimal notation
using `prec` decimal places.

>>> x = simplify(Sqrt(2))
>>> x.as_decimal(10)
'1.4142135623?'
>>> x.as_decimal(20)
'1.41421356237309504880?'

Definition at line 3154 of file z3py.py.

3154 def as_decimal(self, prec):
3155 """Return a string representation of the algebraic number `self` in decimal notation
3156 using `prec` decimal places.
3157
3158 >>> x = simplify(Sqrt(2))
3159 >>> x.as_decimal(10)
3160 '1.4142135623?'
3161 >>> x.as_decimal(20)
3162 '1.41421356237309504880?'
3163 """
3164 return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
3165
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ index()

index ( self)

Definition at line 3169 of file z3py.py.

3169 def index(self):
3170 return Z3_algebraic_get_i(self.ctx_ref(), self.as_ast())
3171
3172
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.

◆ poly()

poly ( self)

Definition at line 3166 of file z3py.py.

3166 def poly(self):
3167 return AstVector(Z3_algebraic_get_poly(self.ctx_ref(), self.as_ast()), self.ctx)
3168
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.

Field Documentation

◆ ctx

ctx

Definition at line 3152 of file z3py.py.

Referenced by ArithRef.__add__(), BitVecRef.__add__(), BitVecRef.__and__(), FuncDeclRef.__call__(), AstMap.__contains__(), AstRef.__copy__(), AstVector.__copy__(), FuncInterp.__copy__(), Goal.__copy__(), ModelRef.__copy__(), AstMap.__deepcopy__(), AstRef.__deepcopy__(), AstVector.__deepcopy__(), Datatype.__deepcopy__(), FuncEntry.__deepcopy__(), FuncInterp.__deepcopy__(), Goal.__deepcopy__(), ModelRef.__deepcopy__(), ParamDescrsRef.__deepcopy__(), ParamsRef.__deepcopy__(), Statistics.__deepcopy__(), AstMap.__del__(), AstRef.__del__(), AstVector.__del__(), Context.__del__(), FuncEntry.__del__(), FuncInterp.__del__(), Goal.__del__(), ModelRef.__del__(), ParamDescrsRef.__del__(), ParamsRef.__del__(), ScopedConstructor.__del__(), ScopedConstructorList.__del__(), Solver.__del__(), Statistics.__del__(), ArithRef.__div__(), BitVecRef.__div__(), ExprRef.__eq__(), ArithRef.__ge__(), BitVecRef.__ge__(), AstMap.__getitem__(), AstVector.__getitem__(), ModelRef.__getitem__(), Statistics.__getitem__(), ArithRef.__gt__(), BitVecRef.__gt__(), BitVecRef.__invert__(), ArithRef.__le__(), BitVecRef.__le__(), AstMap.__len__(), AstVector.__len__(), ModelRef.__len__(), Statistics.__len__(), BitVecRef.__lshift__(), ArithRef.__lt__(), BitVecRef.__lt__(), ArithRef.__mod__(), BitVecRef.__mod__(), ArithRef.__mul__(), BitVecRef.__mul__(), BoolRef.__mul__(), ExprRef.__ne__(), ArithRef.__neg__(), BitVecRef.__neg__(), BitVecRef.__or__(), ArithRef.__pow__(), ArithRef.__radd__(), BitVecRef.__radd__(), BitVecRef.__rand__(), ArithRef.__rdiv__(), BitVecRef.__rdiv__(), AstMap.__repr__(), ParamDescrsRef.__repr__(), ParamsRef.__repr__(), Statistics.__repr__(), BitVecRef.__rlshift__(), ArithRef.__rmod__(), BitVecRef.__rmod__(), ArithRef.__rmul__(), BitVecRef.__rmul__(), BitVecRef.__ror__(), ArithRef.__rpow__(), BitVecRef.__rrshift__(), BitVecRef.__rshift__(), ArithRef.__rsub__(), BitVecRef.__rsub__(), BitVecRef.__rxor__(), AstMap.__setitem__(), AstVector.__setitem__(), ArithRef.__sub__(), BitVecRef.__sub__(), BitVecRef.__xor__(), DatatypeSortRef.accessor(), ExprRef.arg(), FuncEntry.arg_value(), FuncInterp.arity(), Goal.as_expr(), Solver.assert_and_track(), Goal.assert_exprs(), Solver.assert_exprs(), QuantifierRef.body(), Solver.check(), Goal.convert_model(), AstRef.ctx_ref(), ExprRef.decl(), ModelRef.decls(), ArrayRef.default(), RatNumRef.denominator(), Goal.depth(), Goal.dimacs(), FuncDeclRef.domain(), ArraySortRef.domain_n(), FuncInterp.else_value(), FuncInterp.entry(), AstMap.erase(), ModelRef.eval(), Goal.get(), ParamDescrsRef.get_documentation(), ModelRef.get_interp(), Statistics.get_key_value(), ParamDescrsRef.get_kind(), ParamDescrsRef.get_name(), ModelRef.get_sort(), ModelRef.get_universe(), Goal.inconsistent(), AstMap.keys(), Statistics.keys(), Solver.model(), SortRef.name(), QuantifierRef.no_pattern(), FuncEntry.num_args(), FuncInterp.num_entries(), Solver.num_scopes(), ModelRef.num_sorts(), FuncDeclRef.params(), QuantifierRef.pattern(), AlgebraicNumRef.poly(), Solver.pop(), Goal.prec(), AstVector.push(), Solver.push(), QuantifierRef.qid(), ArraySortRef.range(), FuncDeclRef.range(), DatatypeSortRef.recognizer(), Context.ref(), AstMap.reset(), Solver.reset(), AstVector.resize(), ParamsRef.set(), Solver.set(), AstVector.sexpr(), Goal.sexpr(), ModelRef.sexpr(), Goal.size(), ParamDescrsRef.size(), QuantifierRef.skolem_id(), AstRef.translate(), AstVector.translate(), Goal.translate(), ModelRef.translate(), ParamsRef.validate(), FuncEntry.value(), QuantifierRef.var_name(), and QuantifierRef.var_sort().