Z3
 
Loading...
Searching...
No Matches
z3 Namespace Reference

Z3 C++ namespace. More...

Data Structures

class  apply_result
 
class  array
 
class  ast
 
class  ast_vector_tpl
 
class  cast_ast
 
class  cast_ast< ast >
 
class  cast_ast< expr >
 
class  cast_ast< func_decl >
 
class  cast_ast< sort >
 
class  config
 Z3 global configuration object. More...
 
class  constructor_list
 
class  constructors
 
class  context
 A Context manages all other Z3 objects, global configuration options, etc. More...
 
class  exception
 Exception used to sign API usage errors. More...
 
class  expr
 A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort. More...
 
class  fixedpoint
 
class  func_decl
 Function declaration (aka function definition). It is the signature of interpreted and uninterpreted functions in Z3. The basic building block in Z3 is the function application. More...
 
class  func_entry
 
class  func_interp
 
class  goal
 
class  model
 
class  object
 
class  on_clause
 
class  optimize
 
class  param_descrs
 
class  parameter
 class for auxiliary parameters associated with func_decl The class is initialized with a func_decl or application expression and an index The accessor get_expr, get_sort, ... is available depending on the value of kind(). The caller is responsible to check that the kind of the parameter aligns with the call (get_expr etc). More...
 
class  params
 
class  probe
 
class  simplifier
 
class  solver
 
class  sort
 A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort. More...
 
class  stats
 
class  symbol
 
class  tactic
 
class  user_propagator_base
 

Typedefs

typedef ast_vector_tpl< astast_vector
 
typedef ast_vector_tpl< exprexpr_vector
 
typedef ast_vector_tpl< sortsort_vector
 
typedef ast_vector_tpl< func_declfunc_decl_vector
 
typedef std::function< void(expr const &proof, std::vector< unsigned > const &deps, expr_vector const &clause)> on_clause_eh_t
 

Enumerations

enum  check_result { unsat , sat , unknown }
 
enum  rounding_mode {
  RNA , RNE , RTP , RTN ,
  RTZ
}
 

Functions

void set_param (char const *param, char const *value)
 
void set_param (char const *param, bool value)
 
void set_param (char const *param, int value)
 
void reset_params ()
 
std::ostream & operator<< (std::ostream &out, exception const &e)
 
check_result to_check_result (Z3_lbool l)
 
void check_context (object const &a, object const &b)
 
std::ostream & operator<< (std::ostream &out, symbol const &s)
 
std::ostream & operator<< (std::ostream &out, param_descrs const &d)
 
std::ostream & operator<< (std::ostream &out, params const &p)
 
std::ostream & operator<< (std::ostream &out, ast const &n)
 
bool eq (ast const &a, ast const &b)
 
expr select (expr const &a, expr const &i)
 forward declarations
 
expr select (expr const &a, expr_vector const &i)
 
expr implies (expr const &a, expr const &b)
 
expr implies (expr const &a, bool b)
 
expr implies (bool a, expr const &b)
 
expr pw (expr const &a, expr const &b)
 
expr pw (expr const &a, int b)
 
expr pw (int a, expr const &b)
 
expr mod (expr const &a, expr const &b)
 
expr mod (expr const &a, int b)
 
expr mod (int a, expr const &b)
 
expr operator% (expr const &a, expr const &b)
 
expr operator% (expr const &a, int b)
 
expr operator% (int a, expr const &b)
 
expr rem (expr const &a, expr const &b)
 
expr rem (expr const &a, int b)
 
expr rem (int a, expr const &b)
 
expr operator! (expr const &a)
 
expr is_int (expr const &e)
 
expr operator&& (expr const &a, expr const &b)
 
expr operator&& (expr const &a, bool b)
 
expr operator&& (bool a, expr const &b)
 
expr operator|| (expr const &a, expr const &b)
 
expr operator|| (expr const &a, bool b)
 
expr operator|| (bool a, expr const &b)
 
expr operator== (expr const &a, expr const &b)
 
expr operator== (expr const &a, int b)
 
expr operator== (int a, expr const &b)
 
expr operator== (expr const &a, double b)
 
expr operator== (double a, expr const &b)
 
expr operator!= (expr const &a, expr const &b)
 
expr operator!= (expr const &a, int b)
 
expr operator!= (int a, expr const &b)
 
expr operator!= (expr const &a, double b)
 
expr operator!= (double a, expr const &b)
 
expr operator+ (expr const &a, expr const &b)
 
expr operator+ (expr const &a, int b)
 
expr operator+ (int a, expr const &b)
 
expr operator* (expr const &a, expr const &b)
 
expr operator* (expr const &a, int b)
 
expr operator* (int a, expr const &b)
 
expr operator>= (expr const &a, expr const &b)
 
expr operator/ (expr const &a, expr const &b)
 
expr operator/ (expr const &a, int b)
 
expr operator/ (int a, expr const &b)
 
expr operator- (expr const &a)
 
expr operator- (expr const &a, expr const &b)
 
expr operator- (expr const &a, int b)
 
expr operator- (int a, expr const &b)
 
expr operator<= (expr const &a, expr const &b)
 
expr operator<= (expr const &a, int b)
 
expr operator<= (int a, expr const &b)
 
expr operator>= (expr const &a, int b)
 
expr operator>= (int a, expr const &b)
 
expr operator< (expr const &a, expr const &b)
 
expr operator< (expr const &a, int b)
 
expr operator< (int a, expr const &b)
 
expr operator> (expr const &a, expr const &b)
 
expr operator> (expr const &a, int b)
 
expr operator> (int a, expr const &b)
 
expr operator& (expr const &a, expr const &b)
 
expr operator& (expr const &a, int b)
 
expr operator& (int a, expr const &b)
 
expr operator^ (expr const &a, expr const &b)
 
expr operator^ (expr const &a, int b)
 
expr operator^ (int a, expr const &b)
 
expr operator| (expr const &a, expr const &b)
 
expr operator| (expr const &a, int b)
 
expr operator| (int a, expr const &b)
 
expr nand (expr const &a, expr const &b)
 
expr nor (expr const &a, expr const &b)
 
expr xnor (expr const &a, expr const &b)
 
expr min (expr const &a, expr const &b)
 
expr max (expr const &a, expr const &b)
 
expr bvredor (expr const &a)
 
expr bvredand (expr const &a)
 
expr abs (expr const &a)
 
expr sqrt (expr const &a, expr const &rm)
 
expr fp_eq (expr const &a, expr const &b)
 
expr operator~ (expr const &a)
 
expr fma (expr const &a, expr const &b, expr const &c, expr const &rm)
 
expr fpa_fp (expr const &sgn, expr const &exp, expr const &sig)
 
expr fpa_to_sbv (expr const &t, unsigned sz)
 
expr fpa_to_ubv (expr const &t, unsigned sz)
 
expr sbv_to_fpa (expr const &t, sort s)
 
expr ubv_to_fpa (expr const &t, sort s)
 
expr fpa_to_fpa (expr const &t, sort s)
 
expr round_fpa_to_closest_integer (expr const &t)
 
expr ite (expr const &c, expr const &t, expr const &e)
 Create the if-then-else expression ite(c, t, e)
 
expr to_expr (context &c, Z3_ast a)
 Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the whole C API with the C++ layer defined in this file.
 
sort to_sort (context &c, Z3_sort s)
 
func_decl to_func_decl (context &c, Z3_func_decl f)
 
expr sle (expr const &a, expr const &b)
 signed less than or equal to operator for bitvectors.
 
expr sle (expr const &a, int b)
 
expr sle (int a, expr const &b)
 
expr slt (expr const &a, expr const &b)
 signed less than operator for bitvectors.
 
expr slt (expr const &a, int b)
 
expr slt (int a, expr const &b)
 
expr sge (expr const &a, expr const &b)
 signed greater than or equal to operator for bitvectors.
 
expr sge (expr const &a, int b)
 
expr sge (int a, expr const &b)
 
expr sgt (expr const &a, expr const &b)
 signed greater than operator for bitvectors.
 
expr sgt (expr const &a, int b)
 
expr sgt (int a, expr const &b)
 
expr ule (expr const &a, expr const &b)
 unsigned less than or equal to operator for bitvectors.
 
expr ule (expr const &a, int b)
 
expr ule (int a, expr const &b)
 
expr ult (expr const &a, expr const &b)
 unsigned less than operator for bitvectors.
 
expr ult (expr const &a, int b)
 
expr ult (int a, expr const &b)
 
expr uge (expr const &a, expr const &b)
 unsigned greater than or equal to operator for bitvectors.
 
expr uge (expr const &a, int b)
 
expr uge (int a, expr const &b)
 
expr ugt (expr const &a, expr const &b)
 unsigned greater than operator for bitvectors.
 
expr ugt (expr const &a, int b)
 
expr ugt (int a, expr const &b)
 
expr udiv (expr const &a, expr const &b)
 unsigned division operator for bitvectors.
 
expr udiv (expr const &a, int b)
 
expr udiv (int a, expr const &b)
 
expr srem (expr const &a, expr const &b)
 signed remainder operator for bitvectors
 
expr srem (expr const &a, int b)
 
expr srem (int a, expr const &b)
 
expr smod (expr const &a, expr const &b)
 signed modulus operator for bitvectors
 
expr smod (expr const &a, int b)
 
expr smod (int a, expr const &b)
 
expr urem (expr const &a, expr const &b)
 unsigned reminder operator for bitvectors
 
expr urem (expr const &a, int b)
 
expr urem (int a, expr const &b)
 
expr shl (expr const &a, expr const &b)
 shift left operator for bitvectors
 
expr shl (expr const &a, int b)
 
expr shl (int a, expr const &b)
 
expr lshr (expr const &a, expr const &b)
 logic shift right operator for bitvectors
 
expr lshr (expr const &a, int b)
 
expr lshr (int a, expr const &b)
 
expr ashr (expr const &a, expr const &b)
 arithmetic shift right operator for bitvectors
 
expr ashr (expr const &a, int b)
 
expr ashr (int a, expr const &b)
 
expr zext (expr const &a, unsigned i)
 Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
 
expr bv2int (expr const &a, bool is_signed)
 bit-vector and integer conversions.
 
expr int2bv (unsigned n, expr const &a)
 
expr bvadd_no_overflow (expr const &a, expr const &b, bool is_signed)
 bit-vector overflow/underflow checks
 
expr bvadd_no_underflow (expr const &a, expr const &b)
 
expr bvsub_no_overflow (expr const &a, expr const &b)
 
expr bvsub_no_underflow (expr const &a, expr const &b, bool is_signed)
 
expr bvsdiv_no_overflow (expr const &a, expr const &b)
 
expr bvneg_no_overflow (expr const &a)
 
expr bvmul_no_overflow (expr const &a, expr const &b, bool is_signed)
 
expr bvmul_no_underflow (expr const &a, expr const &b)
 
expr sext (expr const &a, unsigned i)
 Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
 
func_decl linear_order (sort const &a, unsigned index)
 
func_decl partial_order (sort const &a, unsigned index)
 
func_decl piecewise_linear_order (sort const &a, unsigned index)
 
func_decl tree_order (sort const &a, unsigned index)
 
expr forall (expr const &x, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr forall (expr_vector const &xs, expr const &b)
 
expr exists (expr const &x, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr exists (expr_vector const &xs, expr const &b)
 
expr lambda (expr const &x, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr lambda (expr_vector const &xs, expr const &b)
 
expr pble (expr_vector const &es, int const *coeffs, int bound)
 
expr pbge (expr_vector const &es, int const *coeffs, int bound)
 
expr pbeq (expr_vector const &es, int const *coeffs, int bound)
 
expr atmost (expr_vector const &es, unsigned bound)
 
expr atleast (expr_vector const &es, unsigned bound)
 
expr sum (expr_vector const &args)
 
expr distinct (expr_vector const &args)
 
expr concat (expr const &a, expr const &b)
 
expr concat (expr_vector const &args)
 
expr map (expr const &f, expr const &list)
 
expr mapi (expr const &f, expr const &i, expr const &list)
 
expr foldl (expr const &f, expr const &a, expr const &list)
 
expr foldli (expr const &f, expr const &i, expr const &a, expr const &list)
 
expr mk_or (expr_vector const &args)
 
expr mk_and (expr_vector const &args)
 
expr mk_xor (expr_vector const &args)
 
std::ostream & operator<< (std::ostream &out, model const &m)
 
std::ostream & operator<< (std::ostream &out, stats const &s)
 
std::ostream & operator<< (std::ostream &out, check_result r)
 
std::ostream & operator<< (std::ostream &out, solver const &s)
 
std::ostream & operator<< (std::ostream &out, goal const &g)
 
std::ostream & operator<< (std::ostream &out, apply_result const &r)
 
tactic operator& (tactic const &t1, tactic const &t2)
 
tactic operator| (tactic const &t1, tactic const &t2)
 
tactic repeat (tactic const &t, unsigned max=UINT_MAX)
 
tactic with (tactic const &t, params const &p)
 
tactic try_for (tactic const &t, unsigned ms)
 
tactic par_or (unsigned n, tactic const *tactics)
 
tactic par_and_then (tactic const &t1, tactic const &t2)
 
simplifier operator& (simplifier const &t1, simplifier const &t2)
 
simplifier with (simplifier const &t, params const &p)
 
probe operator<= (probe const &p1, probe const &p2)
 
probe operator<= (probe const &p1, double p2)
 
probe operator<= (double p1, probe const &p2)
 
probe operator>= (probe const &p1, probe const &p2)
 
probe operator>= (probe const &p1, double p2)
 
probe operator>= (double p1, probe const &p2)
 
probe operator< (probe const &p1, probe const &p2)
 
probe operator< (probe const &p1, double p2)
 
probe operator< (double p1, probe const &p2)
 
probe operator> (probe const &p1, probe const &p2)
 
probe operator> (probe const &p1, double p2)
 
probe operator> (double p1, probe const &p2)
 
probe operator== (probe const &p1, probe const &p2)
 
probe operator== (probe const &p1, double p2)
 
probe operator== (double p1, probe const &p2)
 
probe operator&& (probe const &p1, probe const &p2)
 
probe operator|| (probe const &p1, probe const &p2)
 
probe operator! (probe const &p)
 
std::ostream & operator<< (std::ostream &out, optimize const &s)
 
std::ostream & operator<< (std::ostream &out, fixedpoint const &f)
 
tactic fail_if (probe const &p)
 
tactic when (probe const &p, tactic const &t)
 
tactic cond (probe const &p, tactic const &t1, tactic const &t2)
 
expr to_real (expr const &a)
 
func_decl function (symbol const &name, unsigned arity, sort const *domain, sort const &range)
 
func_decl function (char const *name, unsigned arity, sort const *domain, sort const &range)
 
func_decl function (char const *name, sort const &domain, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &d4, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &d4, sort const &d5, sort const &range)
 
func_decl function (char const *name, sort_vector const &domain, sort const &range)
 
func_decl function (std::string const &name, sort_vector const &domain, sort const &range)
 
func_decl recfun (symbol const &name, unsigned arity, sort const *domain, sort const &range)
 
func_decl recfun (char const *name, unsigned arity, sort const *domain, sort const &range)
 
func_decl recfun (char const *name, sort const &d1, sort const &range)
 
func_decl recfun (char const *name, sort const &d1, sort const &d2, sort const &range)
 
expr select (expr const &a, int i)
 
expr store (expr const &a, expr const &i, expr const &v)
 
expr store (expr const &a, int i, expr const &v)
 
expr store (expr const &a, expr i, int v)
 
expr store (expr const &a, int i, int v)
 
expr store (expr const &a, expr_vector const &i, expr const &v)
 
expr as_array (func_decl &f)
 
expr const_array (sort const &d, expr const &v)
 
expr empty_set (sort const &s)
 
expr full_set (sort const &s)
 
expr set_add (expr const &s, expr const &e)
 
expr set_del (expr const &s, expr const &e)
 
expr set_union (expr const &a, expr const &b)
 
expr set_intersect (expr const &a, expr const &b)
 
expr set_difference (expr const &a, expr const &b)
 
expr set_complement (expr const &a)
 
expr set_member (expr const &s, expr const &e)
 
expr set_subset (expr const &a, expr const &b)
 
expr empty (sort const &s)
 
expr suffixof (expr const &a, expr const &b)
 
expr prefixof (expr const &a, expr const &b)
 
expr indexof (expr const &s, expr const &substr, expr const &offset)
 
expr last_indexof (expr const &s, expr const &substr)
 
expr to_re (expr const &s)
 
expr in_re (expr const &s, expr const &re)
 
expr plus (expr const &re)
 
expr option (expr const &re)
 
expr star (expr const &re)
 
expr re_empty (sort const &s)
 
expr re_full (sort const &s)
 
expr re_intersect (expr_vector const &args)
 
expr re_diff (expr const &a, expr const &b)
 
expr re_complement (expr const &a)
 
expr range (expr const &lo, expr const &hi)
 

Detailed Description

Z3 C++ namespace.

Typedef Documentation

◆ ast_vector

Definition at line 75 of file z3++.h.

◆ expr_vector

Definition at line 76 of file z3++.h.

◆ func_decl_vector

Definition at line 78 of file z3++.h.

◆ on_clause_eh_t

typedef std::function<void(expr const& proof, std::vector<unsigned> const& deps, expr_vector const& clause)> on_clause_eh_t

Definition at line 4268 of file z3++.h.

◆ sort_vector

Definition at line 77 of file z3++.h.

Enumeration Type Documentation

◆ check_result

Enumerator
unsat 
sat 
unknown 

Definition at line 135 of file z3++.h.

135 {
136 unsat, sat, unknown
137 };

◆ rounding_mode

Enumerator
RNA 
RNE 
RTP 
RTN 
RTZ 

Definition at line 139 of file z3++.h.

139 {
140 RNA,
141 RNE,
142 RTP,
143 RTN,
144 RTZ
145 };
@ RNE
Definition z3++.h:141
@ RNA
Definition z3++.h:140
@ RTZ
Definition z3++.h:144
@ RTN
Definition z3++.h:143
@ RTP
Definition z3++.h:142

Function Documentation

◆ abs()

expr abs ( expr const & a)
inline

Definition at line 1995 of file z3++.h.

1995 {
1996 Z3_ast r;
1997 if (a.is_int()) {
1998 expr zero = a.ctx().int_val(0);
1999 expr ge = a >= zero;
2000 expr na = -a;
2001 r = Z3_mk_ite(a.ctx(), ge, a, na);
2002 }
2003 else if (a.is_real()) {
2004 expr zero = a.ctx().real_val(0);
2005 expr ge = a >= zero;
2006 expr na = -a;
2007 r = Z3_mk_ite(a.ctx(), ge, a, na);
2008 }
2009 else {
2010 r = Z3_mk_fpa_abs(a.ctx(), a);
2011 }
2012 a.check_error();
2013 return expr(a.ctx(), r);
2014 }
expr int_val(int n)
Definition z3++.h:3793
expr real_val(int n)
Definition z3++.h:3800
A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort ...
Definition z3++.h:811
context & ctx() const
Definition z3++.h:474
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

◆ as_array()

expr as_array ( func_decl & f)
inline

Definition at line 3991 of file z3++.h.

3991 {
3992 Z3_ast r = Z3_mk_as_array(f.ctx(), f);
3993 f.check_error();
3994 return expr(f.ctx(), r);
3995 }
Z3_error_code check_error() const
Definition z3++.h:475
Z3_ast Z3_API Z3_mk_as_array(Z3_context c, Z3_func_decl f)
Create array with the same interpretation as a function. The array satisfies the property (f x) = (se...

◆ ashr() [1/3]

expr ashr ( expr const & a,
expr const & b )
inline

arithmetic shift right operator for bitvectors

Definition at line 2221 of file z3++.h.

2221{ return to_expr(a.ctx(), Z3_mk_bvashr(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.
expr to_expr(context &c, Z3_ast a)
Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the...
Definition z3++.h:2107

Referenced by ashr(), and ashr().

◆ ashr() [2/3]

expr ashr ( expr const & a,
int b )
inline

Definition at line 2222 of file z3++.h.

2222{ return ashr(a, a.ctx().num_val(b, a.get_sort())); }
expr ashr(expr const &a, expr const &b)
arithmetic shift right operator for bitvectors
Definition z3++.h:2221

◆ ashr() [3/3]

expr ashr ( int a,
expr const & b )
inline

Definition at line 2223 of file z3++.h.

2223{ return ashr(b.ctx().num_val(a, b.get_sort()), b); }

◆ atleast()

expr atleast ( expr_vector const & es,
unsigned bound )
inline

Definition at line 2430 of file z3++.h.

2430 {
2431 assert(es.size() > 0);
2432 context& ctx = es[0u].ctx();
2433 array<Z3_ast> _es(es);
2434 Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
2435 ctx.check_error();
2436 return expr(ctx, r);
2437 }
A Context manages all other Z3 objects, global configuration options, etc.
Definition z3++.h:160
Z3_error_code check_error() const
Auxiliary method used to check for API usage errors.
Definition z3++.h:192
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ atmost()

expr atmost ( expr_vector const & es,
unsigned bound )
inline

Definition at line 2422 of file z3++.h.

2422 {
2423 assert(es.size() > 0);
2424 context& ctx = es[0u].ctx();
2425 array<Z3_ast> _es(es);
2426 Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
2427 ctx.check_error();
2428 return expr(ctx, r);
2429 }
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ bv2int()

expr bv2int ( expr const & a,
bool is_signed )
inline

bit-vector and integer conversions.

Definition at line 2233 of file z3++.h.

2233{ Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

◆ bvadd_no_overflow()

expr bvadd_no_overflow ( expr const & a,
expr const & b,
bool is_signed )
inline

bit-vector overflow/underflow checks

Definition at line 2239 of file z3++.h.

2239 {
2240 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2241 }
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.
void check_context(object const &a, object const &b)
Definition z3++.h:478

◆ bvadd_no_underflow()

expr bvadd_no_underflow ( expr const & a,
expr const & b )
inline

Definition at line 2242 of file z3++.h.

2242 {
2243 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2244 }
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ bvmul_no_overflow()

expr bvmul_no_overflow ( expr const & a,
expr const & b,
bool is_signed )
inline

Definition at line 2257 of file z3++.h.

2257 {
2258 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2259 }
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ bvmul_no_underflow()

expr bvmul_no_underflow ( expr const & a,
expr const & b )
inline

Definition at line 2260 of file z3++.h.

2260 {
2261 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2262 }
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ bvneg_no_overflow()

expr bvneg_no_overflow ( expr const & a)
inline

Definition at line 2254 of file z3++.h.

2254 {
2255 Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
2256 }
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ bvredand()

expr bvredand ( expr const & a)
inline

Definition at line 1989 of file z3++.h.

1989 {
1990 assert(a.is_bv());
1991 Z3_ast r = Z3_mk_bvredand(a.ctx(), a);
1992 a.check_error();
1993 return expr(a.ctx(), r);
1994 }
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.

◆ bvredor()

expr bvredor ( expr const & a)
inline

Definition at line 1983 of file z3++.h.

1983 {
1984 assert(a.is_bv());
1985 Z3_ast r = Z3_mk_bvredor(a.ctx(), a);
1986 a.check_error();
1987 return expr(a.ctx(), r);
1988 }
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.

◆ bvsdiv_no_overflow()

expr bvsdiv_no_overflow ( expr const & a,
expr const & b )
inline

Definition at line 2251 of file z3++.h.

2251 {
2252 check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2253 }
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ bvsub_no_overflow()

expr bvsub_no_overflow ( expr const & a,
expr const & b )
inline

Definition at line 2245 of file z3++.h.

2245 {
2246 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2247 }
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ bvsub_no_underflow()

expr bvsub_no_underflow ( expr const & a,
expr const & b,
bool is_signed )
inline

Definition at line 2248 of file z3++.h.

2248 {
2249 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2250 }
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ check_context()

◆ concat() [1/2]

expr concat ( expr const & a,
expr const & b )
inline

Definition at line 2456 of file z3++.h.

2456 {
2457 check_context(a, b);
2458 Z3_ast r;
2459 if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
2460 Z3_ast _args[2] = { a, b };
2461 r = Z3_mk_seq_concat(a.ctx(), 2, _args);
2462 }
2463 else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
2464 Z3_ast _args[2] = { a, b };
2465 r = Z3_mk_re_concat(a.ctx(), 2, _args);
2466 }
2467 else {
2468 r = Z3_mk_concat(a.ctx(), a, b);
2469 }
2470 a.ctx().check_error();
2471 return expr(a.ctx(), r);
2472 }
bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s)
Check if s is a sequence sort.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s)
Check if s is a regular expression sort.

◆ concat() [2/2]

expr concat ( expr_vector const & args)
inline

Definition at line 2474 of file z3++.h.

2474 {
2475 Z3_ast r;
2476 assert(args.size() > 0);
2477 if (args.size() == 1) {
2478 return args[0u];
2479 }
2480 context& ctx = args[0u].ctx();
2481 array<Z3_ast> _args(args);
2482 if (Z3_is_seq_sort(ctx, args[0u].get_sort())) {
2483 r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
2484 }
2485 else if (Z3_is_re_sort(ctx, args[0u].get_sort())) {
2486 r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
2487 }
2488 else {
2489 r = _args[args.size()-1];
2490 for (unsigned i = args.size()-1; i > 0; ) {
2491 --i;
2492 r = Z3_mk_concat(ctx, _args[i], r);
2493 ctx.check_error();
2494 }
2495 }
2496 ctx.check_error();
2497 return expr(ctx, r);
2498 }

◆ cond()

tactic cond ( probe const & p,
tactic const & t1,
tactic const & t2 )
inline

Definition at line 3471 of file z3++.h.

3471 {
3472 check_context(p, t1); check_context(p, t2);
3473 Z3_tactic r = Z3_tactic_cond(t1.ctx(), p, t1, t2);
3474 t1.check_error();
3475 return tactic(t1.ctx(), r);
3476 }
Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...

◆ const_array()

expr const_array ( sort const & d,
expr const & v )
inline

Definition at line 4008 of file z3++.h.

4008 {
4010 }
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.
#define MK_EXPR2(_fn, _arg1, _arg2)
Definition z3++.h:4002

◆ distinct()

expr distinct ( expr_vector const & args)
inline

Definition at line 2447 of file z3++.h.

2447 {
2448 assert(args.size() > 0);
2449 context& ctx = args[0u].ctx();
2450 array<Z3_ast> _args(args);
2451 Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
2452 ctx.check_error();
2453 return expr(ctx, r);
2454 }
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

◆ empty()

expr empty ( sort const & s)
inline

Definition at line 4064 of file z3++.h.

4064 {
4065 Z3_ast r = Z3_mk_seq_empty(s.ctx(), s);
4066 s.check_error();
4067 return expr(s.ctx(), r);
4068 }
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)
Create an empty sequence of the sequence sort seq.

◆ empty_set()

expr empty_set ( sort const & s)
inline

Definition at line 4012 of file z3++.h.

4012 {
4014 }
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.
#define MK_EXPR1(_fn, _arg)
Definition z3++.h:3997

◆ eq()

bool eq ( ast const & a,
ast const & b )
inline

Definition at line 584 of file z3++.h.

584{ return Z3_is_eq_ast(a.ctx(), a, b); }
bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2)
Compare terms.

◆ exists() [1/5]

expr exists ( expr const & x,
expr const & b )
inline

Definition at line 2349 of file z3++.h.

2349 {
2350 check_context(x, b);
2351 Z3_app vars[] = {(Z3_app) x};
2352 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2353 }
Z3_ast Z3_API Z3_mk_exists_const(Z3_context c, unsigned weight, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], Z3_ast body)
Similar to Z3_mk_forall_const.

◆ exists() [2/5]

expr exists ( expr const & x1,
expr const & x2,
expr const & b )
inline

Definition at line 2354 of file z3++.h.

2354 {
2355 check_context(x1, b); check_context(x2, b);
2356 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
2357 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2358 }

◆ exists() [3/5]

expr exists ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & b )
inline

Definition at line 2359 of file z3++.h.

2359 {
2360 check_context(x1, b); check_context(x2, b); check_context(x3, b);
2361 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
2362 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2363 }

◆ exists() [4/5]

expr exists ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & x4,
expr const & b )
inline

Definition at line 2364 of file z3++.h.

2364 {
2365 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
2366 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
2367 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2368 }

◆ exists() [5/5]

expr exists ( expr_vector const & xs,
expr const & b )
inline

Definition at line 2369 of file z3++.h.

2369 {
2370 array<Z3_app> vars(xs);
2371 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2372 }

◆ fail_if()

tactic fail_if ( probe const & p)
inline

Definition at line 3460 of file z3++.h.

3460 {
3461 Z3_tactic r = Z3_tactic_fail_if(p.ctx(), p);
3462 p.check_error();
3463 return tactic(p.ctx(), r);
3464 }
Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)
Return a tactic that fails if the probe p evaluates to false.

◆ fma()

expr fma ( expr const & a,
expr const & b,
expr const & c,
expr const & rm )
inline

Definition at line 2031 of file z3++.h.

2031 {
2032 check_context(a, b); check_context(a, c); check_context(a, rm);
2033 assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
2034 Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
2035 a.check_error();
2036 return expr(a.ctx(), r);
2037 }
Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Floating-point fused multiply-add.

◆ foldl()

expr foldl ( expr const & f,
expr const & a,
expr const & list )
inline

Definition at line 2514 of file z3++.h.

2514 {
2515 context& ctx = f.ctx();
2516 Z3_ast r = Z3_mk_seq_foldl(ctx, f, a, list);
2517 ctx.check_error();
2518 return expr(ctx, r);
2519 }
Z3_ast Z3_API Z3_mk_seq_foldl(Z3_context c, Z3_ast f, Z3_ast a, Z3_ast s)
Create a fold of the function f over the sequence s with accumulator a.

◆ foldli()

expr foldli ( expr const & f,
expr const & i,
expr const & a,
expr const & list )
inline

Definition at line 2521 of file z3++.h.

2521 {
2522 context& ctx = f.ctx();
2523 Z3_ast r = Z3_mk_seq_foldli(ctx, f, i, a, list);
2524 ctx.check_error();
2525 return expr(ctx, r);
2526 }
Z3_ast Z3_API Z3_mk_seq_foldli(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast a, Z3_ast s)
Create a fold with index tracking of the function f over the sequence s with accumulator a starting a...

◆ forall() [1/5]

expr forall ( expr const & x,
expr const & b )
inline

Definition at line 2325 of file z3++.h.

2325 {
2326 check_context(x, b);
2327 Z3_app vars[] = {(Z3_app) x};
2328 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2329 }
Z3_ast Z3_API Z3_mk_forall_const(Z3_context c, unsigned weight, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], Z3_ast body)
Create a universal quantifier using a list of constants that will form the set of bound variables.

◆ forall() [2/5]

expr forall ( expr const & x1,
expr const & x2,
expr const & b )
inline

Definition at line 2330 of file z3++.h.

2330 {
2331 check_context(x1, b); check_context(x2, b);
2332 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
2333 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2334 }

◆ forall() [3/5]

expr forall ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & b )
inline

Definition at line 2335 of file z3++.h.

2335 {
2336 check_context(x1, b); check_context(x2, b); check_context(x3, b);
2337 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
2338 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2339 }

◆ forall() [4/5]

expr forall ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & x4,
expr const & b )
inline

Definition at line 2340 of file z3++.h.

2340 {
2341 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
2342 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
2343 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2344 }

◆ forall() [5/5]

expr forall ( expr_vector const & xs,
expr const & b )
inline

Definition at line 2345 of file z3++.h.

2345 {
2346 array<Z3_app> vars(xs);
2347 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
2348 }

◆ fp_eq()

expr fp_eq ( expr const & a,
expr const & b )
inline

Definition at line 2022 of file z3++.h.

2022 {
2023 check_context(a, b);
2024 assert(a.is_fpa());
2025 Z3_ast r = Z3_mk_fpa_eq(a.ctx(), a, b);
2026 a.check_error();
2027 return expr(a.ctx(), r);
2028 }
Z3_ast Z3_API Z3_mk_fpa_eq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point equality.

◆ fpa_fp()

expr fpa_fp ( expr const & sgn,
expr const & exp,
expr const & sig )
inline

Definition at line 2039 of file z3++.h.

2039 {
2040 check_context(sgn, exp); check_context(exp, sig);
2041 assert(sgn.is_bv() && exp.is_bv() && sig.is_bv());
2042 Z3_ast r = Z3_mk_fpa_fp(sgn.ctx(), sgn, exp, sig);
2043 sgn.check_error();
2044 return expr(sgn.ctx(), r);
2045 }
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.

◆ fpa_to_fpa()

expr fpa_to_fpa ( expr const & t,
sort s )
inline

Definition at line 2075 of file z3++.h.

2075 {
2076 assert(t.is_fpa());
2077 Z3_ast r = Z3_mk_fpa_to_fp_float(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2078 t.check_error();
2079 return expr(t.ctx(), r);
2080 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

◆ fpa_to_sbv()

expr fpa_to_sbv ( expr const & t,
unsigned sz )
inline

Definition at line 2047 of file z3++.h.

2047 {
2048 assert(t.is_fpa());
2049 Z3_ast r = Z3_mk_fpa_to_sbv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2050 t.check_error();
2051 return expr(t.ctx(), r);
2052 }
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.

◆ fpa_to_ubv()

expr fpa_to_ubv ( expr const & t,
unsigned sz )
inline

Definition at line 2054 of file z3++.h.

2054 {
2055 assert(t.is_fpa());
2056 Z3_ast r = Z3_mk_fpa_to_ubv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
2057 t.check_error();
2058 return expr(t.ctx(), r);
2059 }
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.

◆ full_set()

expr full_set ( sort const & s)
inline

Definition at line 4016 of file z3++.h.

4016 {
4018 }
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.

◆ function() [1/9]

func_decl function ( char const * name,
sort const & d1,
sort const & d2,
sort const & d3,
sort const & d4,
sort const & d5,
sort const & range )
inline

Definition at line 3931 of file z3++.h.

3931 {
3932 return range.ctx().function(name, d1, d2, d3, d4, d5, range);
3933 }
func_decl function(symbol const &name, unsigned arity, sort const *domain, sort const &range)
Definition z3++.h:3634
expr range(expr const &lo, expr const &hi)
Definition z3++.h:4136

◆ function() [2/9]

func_decl function ( char const * name,
sort const & d1,
sort const & d2,
sort const & d3,
sort const & d4,
sort const & range )
inline

Definition at line 3928 of file z3++.h.

3928 {
3929 return range.ctx().function(name, d1, d2, d3, d4, range);
3930 }

◆ function() [3/9]

func_decl function ( char const * name,
sort const & d1,
sort const & d2,
sort const & d3,
sort const & range )
inline

Definition at line 3925 of file z3++.h.

3925 {
3926 return range.ctx().function(name, d1, d2, d3, range);
3927 }

◆ function() [4/9]

func_decl function ( char const * name,
sort const & d1,
sort const & d2,
sort const & range )
inline

Definition at line 3922 of file z3++.h.

3922 {
3923 return range.ctx().function(name, d1, d2, range);
3924 }

◆ function() [5/9]

func_decl function ( char const * name,
sort const & domain,
sort const & range )
inline

Definition at line 3919 of file z3++.h.

3919 {
3920 return range.ctx().function(name, domain, range);
3921 }

◆ function() [6/9]

func_decl function ( char const * name,
sort_vector const & domain,
sort const & range )
inline

Definition at line 3934 of file z3++.h.

3934 {
3935 return range.ctx().function(name, domain, range);
3936 }

◆ function() [7/9]

func_decl function ( char const * name,
unsigned arity,
sort const * domain,
sort const & range )
inline

Definition at line 3916 of file z3++.h.

3916 {
3917 return range.ctx().function(name, arity, domain, range);
3918 }

◆ function() [8/9]

func_decl function ( std::string const & name,
sort_vector const & domain,
sort const & range )
inline

Definition at line 3937 of file z3++.h.

3937 {
3938 return range.ctx().function(name.c_str(), domain, range);
3939 }

◆ function() [9/9]

func_decl function ( symbol const & name,
unsigned arity,
sort const * domain,
sort const & range )
inline

Definition at line 3913 of file z3++.h.

3913 {
3914 return range.ctx().function(name, arity, domain, range);
3915 }

◆ implies() [1/3]

expr implies ( bool a,
expr const & b )
inline

Definition at line 1634 of file z3++.h.

1634{ return implies(b.ctx().bool_val(a), b); }
expr implies(expr const &a, expr const &b)
Definition z3++.h:1629

◆ implies() [2/3]

expr implies ( expr const & a,
bool b )
inline

Definition at line 1633 of file z3++.h.

1633{ return implies(a, a.ctx().bool_val(b)); }

◆ implies() [3/3]

expr implies ( expr const & a,
expr const & b )
inline

Definition at line 1629 of file z3++.h.

1629 {
1630 assert(a.is_bool() && b.is_bool());
1632 }
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.
#define _Z3_MK_BIN_(a, b, binop)
Definition z3++.h:1622

◆ in_re()

expr in_re ( expr const & s,
expr const & re )
inline

Definition at line 4096 of file z3++.h.

4096 {
4097 MK_EXPR2(Z3_mk_seq_in_re, s, re);
4098 }
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)
Check if seq is in the language generated by the regular expression re.

◆ indexof()

expr indexof ( expr const & s,
expr const & substr,
expr const & offset )
inline

Definition at line 4081 of file z3++.h.

4081 {
4082 check_context(s, substr); check_context(s, offset);
4083 Z3_ast r = Z3_mk_seq_index(s.ctx(), s, substr, offset);
4084 s.check_error();
4085 return expr(s.ctx(), r);
4086 }
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)
Return index of the first occurrence of substr in s starting from offset offset. If s does not contai...

◆ int2bv()

expr int2bv ( unsigned n,
expr const & a )
inline

Definition at line 2234 of file z3++.h.

2234{ Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ is_int()

expr is_int ( expr const & e)
inline

Definition at line 1677 of file z3++.h.

1677{ _Z3_MK_UN_(e, Z3_mk_is_int); }
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.
#define _Z3_MK_UN_(a, mkun)
Definition z3++.h:1669

◆ ite()

expr ite ( expr const & c,
expr const & t,
expr const & e )
inline

Create the if-then-else expression ite(c, t, e)

Precondition
c.is_bool()

Definition at line 2094 of file z3++.h.

2094 {
2095 check_context(c, t); check_context(c, e);
2096 assert(c.is_bool());
2097 Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
2098 c.check_error();
2099 return expr(c.ctx(), r);
2100 }

◆ lambda() [1/5]

expr lambda ( expr const & x,
expr const & b )
inline

Definition at line 2373 of file z3++.h.

2373 {
2374 check_context(x, b);
2375 Z3_app vars[] = {(Z3_app) x};
2376 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 1, vars, b); b.check_error(); return expr(b.ctx(), r);
2377 }
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.

◆ lambda() [2/5]

expr lambda ( expr const & x1,
expr const & x2,
expr const & b )
inline

Definition at line 2378 of file z3++.h.

2378 {
2379 check_context(x1, b); check_context(x2, b);
2380 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
2381 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 2, vars, b); b.check_error(); return expr(b.ctx(), r);
2382 }

◆ lambda() [3/5]

expr lambda ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & b )
inline

Definition at line 2383 of file z3++.h.

2383 {
2384 check_context(x1, b); check_context(x2, b); check_context(x3, b);
2385 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
2386 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 3, vars, b); b.check_error(); return expr(b.ctx(), r);
2387 }

◆ lambda() [4/5]

expr lambda ( expr const & x1,
expr const & x2,
expr const & x3,
expr const & x4,
expr const & b )
inline

Definition at line 2388 of file z3++.h.

2388 {
2389 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
2390 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
2391 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 4, vars, b); b.check_error(); return expr(b.ctx(), r);
2392 }

◆ lambda() [5/5]

expr lambda ( expr_vector const & xs,
expr const & b )
inline

Definition at line 2393 of file z3++.h.

2393 {
2394 array<Z3_app> vars(xs);
2395 Z3_ast r = Z3_mk_lambda_const(b.ctx(), vars.size(), vars.ptr(), b); b.check_error(); return expr(b.ctx(), r);
2396 }

◆ last_indexof()

expr last_indexof ( expr const & s,
expr const & substr )
inline

Definition at line 4087 of file z3++.h.

4087 {
4088 check_context(s, substr);
4089 Z3_ast r = Z3_mk_seq_last_index(s.ctx(), s, substr);
4090 s.check_error();
4091 return expr(s.ctx(), r);
4092 }
Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast s, Z3_ast substr)
Return index of the last occurrence of substr in s. If s does not contain substr, then the value is -...

◆ linear_order()

func_decl linear_order ( sort const & a,
unsigned index )
inline

Definition at line 2270 of file z3++.h.

2270 {
2271 return to_func_decl(a.ctx(), Z3_mk_linear_order(a.ctx(), a, index));
2272 }
Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a linear ordering relation over signature a. The relation is identified by the index id.
func_decl to_func_decl(context &c, Z3_func_decl f)
Definition z3++.h:2121

◆ lshr() [1/3]

expr lshr ( expr const & a,
expr const & b )
inline

logic shift right operator for bitvectors

Definition at line 2214 of file z3++.h.

2214{ return to_expr(a.ctx(), Z3_mk_bvlshr(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.

Referenced by lshr(), and lshr().

◆ lshr() [2/3]

expr lshr ( expr const & a,
int b )
inline

Definition at line 2215 of file z3++.h.

2215{ return lshr(a, a.ctx().num_val(b, a.get_sort())); }
expr lshr(expr const &a, expr const &b)
logic shift right operator for bitvectors
Definition z3++.h:2214

◆ lshr() [3/3]

expr lshr ( int a,
expr const & b )
inline

Definition at line 2216 of file z3++.h.

2216{ return lshr(b.ctx().num_val(a, b.get_sort()), b); }

◆ map()

expr map ( expr const & f,
expr const & list )
inline

Definition at line 2500 of file z3++.h.

2500 {
2501 context& ctx = f.ctx();
2502 Z3_ast r = Z3_mk_seq_map(ctx, f, list);
2503 ctx.check_error();
2504 return expr(ctx, r);
2505 }
Z3_ast Z3_API Z3_mk_seq_map(Z3_context c, Z3_ast f, Z3_ast s)
Create a map of the function f over the sequence s.

◆ mapi()

expr mapi ( expr const & f,
expr const & i,
expr const & list )
inline

Definition at line 2507 of file z3++.h.

2507 {
2508 context& ctx = f.ctx();
2509 Z3_ast r = Z3_mk_seq_mapi(ctx, f, i, list);
2510 ctx.check_error();
2511 return expr(ctx, r);
2512 }
Z3_ast Z3_API Z3_mk_seq_mapi(Z3_context c, Z3_ast f, Z3_ast i, Z3_ast s)
Create a map of the function f over the sequence s starting at index i.

◆ max()

expr max ( expr const & a,
expr const & b )
inline

Definition at line 1967 of file z3++.h.

1967 {
1968 check_context(a, b);
1969 Z3_ast r;
1970 if (a.is_arith()) {
1971 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
1972 }
1973 else if (a.is_bv()) {
1974 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
1975 }
1976 else {
1977 assert(a.is_fpa());
1978 r = Z3_mk_fpa_max(a.ctx(), a, b);
1979 }
1980 a.check_error();
1981 return expr(a.ctx(), r);
1982 }
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2)
Maximum of floating-point numbers.
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.

◆ min()

expr min ( expr const & a,
expr const & b )
inline

Definition at line 1951 of file z3++.h.

1951 {
1952 check_context(a, b);
1953 Z3_ast r;
1954 if (a.is_arith()) {
1955 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
1956 }
1957 else if (a.is_bv()) {
1958 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
1959 }
1960 else {
1961 assert(a.is_fpa());
1962 r = Z3_mk_fpa_min(a.ctx(), a, b);
1963 }
1964 a.check_error();
1965 return expr(a.ctx(), r);
1966 }
Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2)
Minimum of floating-point numbers.

◆ mk_and()

expr mk_and ( expr_vector const & args)
inline

Definition at line 2534 of file z3++.h.

2534 {
2535 array<Z3_ast> _args(args);
2536 Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
2537 args.check_error();
2538 return expr(args.ctx(), r);
2539 }
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

◆ mk_or()

expr mk_or ( expr_vector const & args)
inline

Definition at line 2528 of file z3++.h.

2528 {
2529 array<Z3_ast> _args(args);
2530 Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
2531 args.check_error();
2532 return expr(args.ctx(), r);
2533 }
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

◆ mk_xor()

expr mk_xor ( expr_vector const & args)
inline

Definition at line 2540 of file z3++.h.

2540 {
2541 if (args.empty())
2542 return args.ctx().bool_val(false);
2543 expr r = args[0u];
2544 for (unsigned i = 1; i < args.size(); ++i)
2545 r = r ^ args[i];
2546 return r;
2547 }

◆ mod() [1/3]

expr mod ( expr const & a,
expr const & b )
inline

Definition at line 1641 of file z3++.h.

1641 {
1642 if (a.is_bv()) {
1643 _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
1644 }
1645 else {
1646 _Z3_MK_BIN_(a, b, Z3_mk_mod);
1647 }
1648 }
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

Referenced by operator%(), operator%(), and operator%().

◆ mod() [2/3]

expr mod ( expr const & a,
int b )
inline

Definition at line 1649 of file z3++.h.

1649{ return mod(a, a.ctx().num_val(b, a.get_sort())); }
expr mod(expr const &a, expr const &b)
Definition z3++.h:1641

◆ mod() [3/3]

expr mod ( int a,
expr const & b )
inline

Definition at line 1650 of file z3++.h.

1650{ return mod(b.ctx().num_val(a, b.get_sort()), b); }

◆ nand()

expr nand ( expr const & a,
expr const & b )
inline

Definition at line 1948 of file z3++.h.

1948{ if (a.is_bool()) return !(a && b); check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nand.

◆ nor()

expr nor ( expr const & a,
expr const & b )
inline

Definition at line 1949 of file z3++.h.

1949{ if (a.is_bool()) return !(a || b); check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nor.

◆ operator!() [1/2]

expr operator! ( expr const & a)
inline
Precondition
a.is_bool()

Definition at line 1675 of file z3++.h.

1675{ assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

◆ operator!() [2/2]

probe operator! ( probe const & p)
inline

Definition at line 3283 of file z3++.h.

3283 {
3284 Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
3285 }
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.

◆ operator!=() [1/5]

expr operator!= ( double a,
expr const & b )
inline

Definition at line 1727 of file z3++.h.

1727{ assert(b.is_fpa()); return b.ctx().fpa_val(a) != b; }

◆ operator!=() [2/5]

expr operator!= ( expr const & a,
double b )
inline

Definition at line 1726 of file z3++.h.

1726{ assert(a.is_fpa()); return a != a.ctx().fpa_val(b); }

◆ operator!=() [3/5]

expr operator!= ( expr const & a,
expr const & b )
inline

Definition at line 1717 of file z3++.h.

1717 {
1718 check_context(a, b);
1719 Z3_ast args[2] = { a, b };
1720 Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
1721 a.check_error();
1722 return expr(a.ctx(), r);
1723 }

◆ operator!=() [4/5]

expr operator!= ( expr const & a,
int b )
inline

Definition at line 1724 of file z3++.h.

1724{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }

◆ operator!=() [5/5]

expr operator!= ( int a,
expr const & b )
inline

Definition at line 1725 of file z3++.h.

1725{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

◆ operator%() [1/3]

expr operator% ( expr const & a,
expr const & b )
inline

Definition at line 1652 of file z3++.h.

1652{ return mod(a, b); }

◆ operator%() [2/3]

expr operator% ( expr const & a,
int b )
inline

Definition at line 1653 of file z3++.h.

1653{ return mod(a, b); }

◆ operator%() [3/3]

expr operator% ( int a,
expr const & b )
inline

Definition at line 1654 of file z3++.h.

1654{ return mod(a, b); }

◆ operator&() [1/5]

expr operator& ( expr const & a,
expr const & b )
inline

Definition at line 1936 of file z3++.h.

1936{ if (a.is_bool()) return a && b; check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ operator&() [2/5]

expr operator& ( expr const & a,
int b )
inline

Definition at line 1937 of file z3++.h.

1937{ return a & a.ctx().num_val(b, a.get_sort()); }

◆ operator&() [3/5]

expr operator& ( int a,
expr const & b )
inline

Definition at line 1938 of file z3++.h.

1938{ return b.ctx().num_val(a, b.get_sort()) & b; }

◆ operator&() [4/5]

simplifier operator& ( simplifier const & t1,
simplifier const & t2 )
inline

Definition at line 3197 of file z3++.h.

3197 {
3198 check_context(t1, t2);
3199 Z3_simplifier r = Z3_simplifier_and_then(t1.ctx(), t1, t2);
3200 t1.check_error();
3201 return simplifier(t1.ctx(), r);
3202 }
Z3_simplifier Z3_API Z3_simplifier_and_then(Z3_context c, Z3_simplifier t1, Z3_simplifier t2)
Return a simplifier that applies t1 to a given goal and t2 to every subgoal produced by t1.

◆ operator&() [5/5]

tactic operator& ( tactic const & t1,
tactic const & t2 )
inline

Definition at line 3123 of file z3++.h.

3123 {
3124 check_context(t1, t2);
3125 Z3_tactic r = Z3_tactic_and_then(t1.ctx(), t1, t2);
3126 t1.check_error();
3127 return tactic(t1.ctx(), r);
3128 }
Z3_tactic Z3_API Z3_tactic_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and t2 to every subgoal produced by t1.

◆ operator&&() [1/4]

expr operator&& ( bool a,
expr const & b )
inline
Precondition
b.is_bool()

Definition at line 1691 of file z3++.h.

1691{ return b.ctx().bool_val(a) && b; }

◆ operator&&() [2/4]

expr operator&& ( expr const & a,
bool b )
inline
Precondition
a.is_bool()

Definition at line 1690 of file z3++.h.

1690{ return a && a.ctx().bool_val(b); }

◆ operator&&() [3/4]

expr operator&& ( expr const & a,
expr const & b )
inline
Precondition
a.is_bool()
b.is_bool()

Definition at line 1681 of file z3++.h.

1681 {
1682 check_context(a, b);
1683 assert(a.is_bool() && b.is_bool());
1684 Z3_ast args[2] = { a, b };
1685 Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
1686 a.check_error();
1687 return expr(a.ctx(), r);
1688 }

◆ operator&&() [4/4]

probe operator&& ( probe const & p1,
probe const & p2 )
inline

Definition at line 3277 of file z3++.h.

3277 {
3278 check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3279 }
Z3_probe Z3_API Z3_probe_and(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when p1 and p2 evaluates to true.

◆ operator*() [1/3]

expr operator* ( expr const & a,
expr const & b )
inline

Definition at line 1759 of file z3++.h.

1759 {
1760 check_context(a, b);
1761 Z3_ast r = 0;
1762 if (a.is_arith() && b.is_arith()) {
1763 Z3_ast args[2] = { a, b };
1764 r = Z3_mk_mul(a.ctx(), 2, args);
1765 }
1766 else if (a.is_bv() && b.is_bv()) {
1767 r = Z3_mk_bvmul(a.ctx(), a, b);
1768 }
1769 else if (a.is_fpa() && b.is_fpa()) {
1770 r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1771 }
1772 else {
1773 // operator is not supported by given arguments.
1774 assert(false);
1775 }
1776 a.check_error();
1777 return expr(a.ctx(), r);
1778 }
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point multiplication.

◆ operator*() [2/3]

expr operator* ( expr const & a,
int b )
inline

Definition at line 1779 of file z3++.h.

1779{ return a * a.ctx().num_val(b, a.get_sort()); }

◆ operator*() [3/3]

expr operator* ( int a,
expr const & b )
inline

Definition at line 1780 of file z3++.h.

1780{ return b.ctx().num_val(a, b.get_sort()) * b; }

◆ operator+() [1/3]

expr operator+ ( expr const & a,
expr const & b )
inline

Definition at line 1729 of file z3++.h.

1729 {
1730 check_context(a, b);
1731 Z3_ast r = 0;
1732 if (a.is_arith() && b.is_arith()) {
1733 Z3_ast args[2] = { a, b };
1734 r = Z3_mk_add(a.ctx(), 2, args);
1735 }
1736 else if (a.is_bv() && b.is_bv()) {
1737 r = Z3_mk_bvadd(a.ctx(), a, b);
1738 }
1739 else if (a.is_seq() && b.is_seq()) {
1740 return concat(a, b);
1741 }
1742 else if (a.is_re() && b.is_re()) {
1743 Z3_ast _args[2] = { a, b };
1744 r = Z3_mk_re_union(a.ctx(), 2, _args);
1745 }
1746 else if (a.is_fpa() && b.is_fpa()) {
1747 r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1748 }
1749 else {
1750 // operator is not supported by given arguments.
1751 assert(false);
1752 }
1753 a.check_error();
1754 return expr(a.ctx(), r);
1755 }
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point addition.
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].
expr concat(expr const &a, expr const &b)
Definition z3++.h:2456

◆ operator+() [2/3]

expr operator+ ( expr const & a,
int b )
inline

Definition at line 1756 of file z3++.h.

1756{ return a + a.ctx().num_val(b, a.get_sort()); }

◆ operator+() [3/3]

expr operator+ ( int a,
expr const & b )
inline

Definition at line 1757 of file z3++.h.

1757{ return b.ctx().num_val(a, b.get_sort()) + b; }

◆ operator-() [1/4]

expr operator- ( expr const & a)
inline

Definition at line 1825 of file z3++.h.

1825 {
1826 Z3_ast r = 0;
1827 if (a.is_arith()) {
1828 r = Z3_mk_unary_minus(a.ctx(), a);
1829 }
1830 else if (a.is_bv()) {
1831 r = Z3_mk_bvneg(a.ctx(), a);
1832 }
1833 else if (a.is_fpa()) {
1834 r = Z3_mk_fpa_neg(a.ctx(), a);
1835 }
1836 else {
1837 // operator is not supported by given arguments.
1838 assert(false);
1839 }
1840 a.check_error();
1841 return expr(a.ctx(), r);
1842 }
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.

◆ operator-() [2/4]

expr operator- ( expr const & a,
expr const & b )
inline

Definition at line 1844 of file z3++.h.

1844 {
1845 check_context(a, b);
1846 Z3_ast r = 0;
1847 if (a.is_arith() && b.is_arith()) {
1848 Z3_ast args[2] = { a, b };
1849 r = Z3_mk_sub(a.ctx(), 2, args);
1850 }
1851 else if (a.is_bv() && b.is_bv()) {
1852 r = Z3_mk_bvsub(a.ctx(), a, b);
1853 }
1854 else if (a.is_fpa() && b.is_fpa()) {
1855 r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1856 }
1857 else {
1858 // operator is not supported by given arguments.
1859 assert(false);
1860 }
1861 a.check_error();
1862 return expr(a.ctx(), r);
1863 }
Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point subtraction.
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] - ... - args[num_args - 1].

◆ operator-() [3/4]

expr operator- ( expr const & a,
int b )
inline

Definition at line 1864 of file z3++.h.

1864{ return a - a.ctx().num_val(b, a.get_sort()); }

◆ operator-() [4/4]

expr operator- ( int a,
expr const & b )
inline

Definition at line 1865 of file z3++.h.

1865{ return b.ctx().num_val(a, b.get_sort()) - b; }

◆ operator/() [1/3]

expr operator/ ( expr const & a,
expr const & b )
inline

Definition at line 1803 of file z3++.h.

1803 {
1804 check_context(a, b);
1805 Z3_ast r = 0;
1806 if (a.is_arith() && b.is_arith()) {
1807 r = Z3_mk_div(a.ctx(), a, b);
1808 }
1809 else if (a.is_bv() && b.is_bv()) {
1810 r = Z3_mk_bvsdiv(a.ctx(), a, b);
1811 }
1812 else if (a.is_fpa() && b.is_fpa()) {
1813 r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1814 }
1815 else {
1816 // operator is not supported by given arguments.
1817 assert(false);
1818 }
1819 a.check_error();
1820 return expr(a.ctx(), r);
1821 }
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point division.

◆ operator/() [2/3]

expr operator/ ( expr const & a,
int b )
inline

Definition at line 1822 of file z3++.h.

1822{ return a / a.ctx().num_val(b, a.get_sort()); }

◆ operator/() [3/3]

expr operator/ ( int a,
expr const & b )
inline

Definition at line 1823 of file z3++.h.

1823{ return b.ctx().num_val(a, b.get_sort()) / b; }

◆ operator<() [1/6]

probe operator< ( double p1,
probe const & p2 )
inline

Definition at line 3266 of file z3++.h.

3266{ return probe(p2.ctx(), p1) < p2; }

◆ operator<() [2/6]

expr operator< ( expr const & a,
expr const & b )
inline

Definition at line 1892 of file z3++.h.

1892 {
1893 check_context(a, b);
1894 Z3_ast r = 0;
1895 if (a.is_arith() && b.is_arith()) {
1896 r = Z3_mk_lt(a.ctx(), a, b);
1897 }
1898 else if (a.is_bv() && b.is_bv()) {
1899 r = Z3_mk_bvslt(a.ctx(), a, b);
1900 }
1901 else if (a.is_fpa() && b.is_fpa()) {
1902 r = Z3_mk_fpa_lt(a.ctx(), a, b);
1903 }
1904 else {
1905 // operator is not supported by given arguments.
1906 assert(false);
1907 }
1908 a.check_error();
1909 return expr(a.ctx(), r);
1910 }
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than.

◆ operator<() [3/6]

expr operator< ( expr const & a,
int b )
inline

Definition at line 1911 of file z3++.h.

1911{ return a < a.ctx().num_val(b, a.get_sort()); }

◆ operator<() [4/6]

expr operator< ( int a,
expr const & b )
inline

Definition at line 1912 of file z3++.h.

1912{ return b.ctx().num_val(a, b.get_sort()) < b; }

◆ operator<() [5/6]

probe operator< ( probe const & p1,
double p2 )
inline

Definition at line 3265 of file z3++.h.

3265{ return p1 < probe(p1.ctx(), p2); }

◆ operator<() [6/6]

probe operator< ( probe const & p1,
probe const & p2 )
inline

Definition at line 3262 of file z3++.h.

3262 {
3263 check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3264 }
Z3_probe Z3_API Z3_probe_lt(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is less than the value returned...

◆ operator<<() [1/13]

std::ostream & operator<< ( std::ostream & out,
apply_result const & r )
inline

Definition at line 3081 of file z3++.h.

3081{ out << Z3_apply_result_to_string(r.ctx(), r); return out; }
Z3_string Z3_API Z3_apply_result_to_string(Z3_context c, Z3_apply_result r)
Convert the Z3_apply_result object returned by Z3_tactic_apply into a string.

◆ operator<<() [2/13]

std::ostream & operator<< ( std::ostream & out,
ast const & n )
inline

Definition at line 580 of file z3++.h.

580 {
581 out << Z3_ast_to_string(n.ctx(), n.m_ast); return out;
582 }
Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a)
Convert the given AST node into a string.

◆ operator<<() [3/13]

std::ostream & operator<< ( std::ostream & out,
check_result r )
inline

Definition at line 2716 of file z3++.h.

2716 {
2717 if (r == unsat) out << "unsat";
2718 else if (r == sat) out << "sat";
2719 else out << "unknown";
2720 return out;
2721 }

◆ operator<<() [4/13]

std::ostream & operator<< ( std::ostream & out,
exception const & e )
inline

Definition at line 97 of file z3++.h.

97{ out << e.msg(); return out; }

◆ operator<<() [5/13]

std::ostream & operator<< ( std::ostream & out,
fixedpoint const & f )
inline

Definition at line 3458 of file z3++.h.

3458{ return out << Z3_fixedpoint_to_string(f.ctx(), f, 0, 0); }
Z3_string Z3_API Z3_fixedpoint_to_string(Z3_context c, Z3_fixedpoint f, unsigned num_queries, Z3_ast queries[])
Print the current rules and background axioms as a string.

◆ operator<<() [6/13]

std::ostream & operator<< ( std::ostream & out,
goal const & g )
inline

Definition at line 3057 of file z3++.h.

3057{ out << Z3_goal_to_string(g.ctx(), g); return out; }
Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g)
Convert a goal into a string.

◆ operator<<() [7/13]

std::ostream & operator<< ( std::ostream & out,
model const & m )
inline

Definition at line 2684 of file z3++.h.

2684{ return out << m.to_string(); }

◆ operator<<() [8/13]

std::ostream & operator<< ( std::ostream & out,
optimize const & s )
inline

Definition at line 3400 of file z3++.h.

3400{ out << Z3_optimize_to_string(s.ctx(), s.m_opt); return out; }
Z3_string Z3_API Z3_optimize_to_string(Z3_context c, Z3_optimize o)
Print the current context as a string.

◆ operator<<() [9/13]

std::ostream & operator<< ( std::ostream & out,
param_descrs const & d )
inline

Definition at line 523 of file z3++.h.

523{ return out << d.to_string(); }

◆ operator<<() [10/13]

std::ostream & operator<< ( std::ostream & out,
params const & p )
inline

Definition at line 547 of file z3++.h.

547 {
548 out << Z3_params_to_string(p.ctx(), p); return out;
549 }
Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p)
Convert a parameter set into a string. This function is mainly used for printing the contents of a pa...

◆ operator<<() [11/13]

std::ostream & operator<< ( std::ostream & out,
solver const & s )
inline

Definition at line 2998 of file z3++.h.

2998{ out << Z3_solver_to_string(s.ctx(), s); return out; }
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.

◆ operator<<() [12/13]

std::ostream & operator<< ( std::ostream & out,
stats const & s )
inline

Definition at line 2713 of file z3++.h.

2713{ out << Z3_stats_to_string(s.ctx(), s); return out; }
Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s)
Convert a statistics into a string.

◆ operator<<() [13/13]

std::ostream & operator<< ( std::ostream & out,
symbol const & s )
inline

Definition at line 491 of file z3++.h.

491 {
492 if (s.kind() == Z3_INT_SYMBOL)
493 out << "k!" << s.to_int();
494 else
495 out << s.str();
496 return out;
497 }
@ Z3_INT_SYMBOL
Definition z3_api.h:76

◆ operator<=() [1/6]

probe operator<= ( double p1,
probe const & p2 )
inline

Definition at line 3256 of file z3++.h.

3256{ return probe(p2.ctx(), p1) <= p2; }

◆ operator<=() [2/6]

expr operator<= ( expr const & a,
expr const & b )
inline

Definition at line 1867 of file z3++.h.

1867 {
1868 check_context(a, b);
1869 Z3_ast r = 0;
1870 if (a.is_arith() && b.is_arith()) {
1871 r = Z3_mk_le(a.ctx(), a, b);
1872 }
1873 else if (a.is_bv() && b.is_bv()) {
1874 r = Z3_mk_bvsle(a.ctx(), a, b);
1875 }
1876 else if (a.is_fpa() && b.is_fpa()) {
1877 r = Z3_mk_fpa_leq(a.ctx(), a, b);
1878 }
1879 else {
1880 // operator is not supported by given arguments.
1881 assert(false);
1882 }
1883 a.check_error();
1884 return expr(a.ctx(), r);
1885 }
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than or equal.

◆ operator<=() [3/6]

expr operator<= ( expr const & a,
int b )
inline

Definition at line 1886 of file z3++.h.

1886{ return a <= a.ctx().num_val(b, a.get_sort()); }

◆ operator<=() [4/6]

expr operator<= ( int a,
expr const & b )
inline

Definition at line 1887 of file z3++.h.

1887{ return b.ctx().num_val(a, b.get_sort()) <= b; }

◆ operator<=() [5/6]

probe operator<= ( probe const & p1,
double p2 )
inline

Definition at line 3255 of file z3++.h.

3255{ return p1 <= probe(p1.ctx(), p2); }

◆ operator<=() [6/6]

probe operator<= ( probe const & p1,
probe const & p2 )
inline

Definition at line 3252 of file z3++.h.

3252 {
3253 check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3254 }
Z3_probe Z3_API Z3_probe_le(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is less than or equal to the va...

◆ operator==() [1/8]

expr operator== ( double a,
expr const & b )
inline

Definition at line 1715 of file z3++.h.

1715{ assert(b.is_fpa()); return b.ctx().fpa_val(a) == b; }

◆ operator==() [2/8]

probe operator== ( double p1,
probe const & p2 )
inline

Definition at line 3276 of file z3++.h.

3276{ return probe(p2.ctx(), p1) == p2; }

◆ operator==() [3/8]

expr operator== ( expr const & a,
double b )
inline

Definition at line 1714 of file z3++.h.

1714{ assert(a.is_fpa()); return a == a.ctx().fpa_val(b); }

◆ operator==() [4/8]

expr operator== ( expr const & a,
expr const & b )
inline

Definition at line 1706 of file z3++.h.

1706 {
1707 check_context(a, b);
1708 Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
1709 a.check_error();
1710 return expr(a.ctx(), r);
1711 }
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.

◆ operator==() [5/8]

expr operator== ( expr const & a,
int b )
inline

Definition at line 1712 of file z3++.h.

1712{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }

◆ operator==() [6/8]

expr operator== ( int a,
expr const & b )
inline

Definition at line 1713 of file z3++.h.

1713{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

◆ operator==() [7/8]

probe operator== ( probe const & p1,
double p2 )
inline

Definition at line 3275 of file z3++.h.

3275{ return p1 == probe(p1.ctx(), p2); }

◆ operator==() [8/8]

probe operator== ( probe const & p1,
probe const & p2 )
inline

Definition at line 3272 of file z3++.h.

3272 {
3273 check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3274 }
Z3_probe Z3_API Z3_probe_eq(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is equal to the value returned ...

◆ operator>() [1/6]

probe operator> ( double p1,
probe const & p2 )
inline

Definition at line 3271 of file z3++.h.

3271{ return probe(p2.ctx(), p1) > p2; }

◆ operator>() [2/6]

expr operator> ( expr const & a,
expr const & b )
inline

Definition at line 1914 of file z3++.h.

1914 {
1915 check_context(a, b);
1916 Z3_ast r = 0;
1917 if (a.is_arith() && b.is_arith()) {
1918 r = Z3_mk_gt(a.ctx(), a, b);
1919 }
1920 else if (a.is_bv() && b.is_bv()) {
1921 r = Z3_mk_bvsgt(a.ctx(), a, b);
1922 }
1923 else if (a.is_fpa() && b.is_fpa()) {
1924 r = Z3_mk_fpa_gt(a.ctx(), a, b);
1925 }
1926 else {
1927 // operator is not supported by given arguments.
1928 assert(false);
1929 }
1930 a.check_error();
1931 return expr(a.ctx(), r);
1932 }
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than.
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.

◆ operator>() [3/6]

expr operator> ( expr const & a,
int b )
inline

Definition at line 1933 of file z3++.h.

1933{ return a > a.ctx().num_val(b, a.get_sort()); }

◆ operator>() [4/6]

expr operator> ( int a,
expr const & b )
inline

Definition at line 1934 of file z3++.h.

1934{ return b.ctx().num_val(a, b.get_sort()) > b; }

◆ operator>() [5/6]

probe operator> ( probe const & p1,
double p2 )
inline

Definition at line 3270 of file z3++.h.

3270{ return p1 > probe(p1.ctx(), p2); }

◆ operator>() [6/6]

probe operator> ( probe const & p1,
probe const & p2 )
inline

Definition at line 3267 of file z3++.h.

3267 {
3268 check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3269 }
Z3_probe Z3_API Z3_probe_gt(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is greater than the value retur...

◆ operator>=() [1/6]

probe operator>= ( double p1,
probe const & p2 )
inline

Definition at line 3261 of file z3++.h.

3261{ return probe(p2.ctx(), p1) >= p2; }

◆ operator>=() [2/6]

expr operator>= ( expr const & a,
expr const & b )
inline

Definition at line 1783 of file z3++.h.

1783 {
1784 check_context(a, b);
1785 Z3_ast r = 0;
1786 if (a.is_arith() && b.is_arith()) {
1787 r = Z3_mk_ge(a.ctx(), a, b);
1788 }
1789 else if (a.is_bv() && b.is_bv()) {
1790 r = Z3_mk_bvsge(a.ctx(), a, b);
1791 }
1792 else if (a.is_fpa() && b.is_fpa()) {
1793 r = Z3_mk_fpa_geq(a.ctx(), a, b);
1794 }
1795 else {
1796 // operator is not supported by given arguments.
1797 assert(false);
1798 }
1799 a.check_error();
1800 return expr(a.ctx(), r);
1801 }
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_geq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than or equal.

◆ operator>=() [3/6]

expr operator>= ( expr const & a,
int b )
inline

Definition at line 1889 of file z3++.h.

1889{ return a >= a.ctx().num_val(b, a.get_sort()); }

◆ operator>=() [4/6]

expr operator>= ( int a,
expr const & b )
inline

Definition at line 1890 of file z3++.h.

1890{ return b.ctx().num_val(a, b.get_sort()) >= b; }

◆ operator>=() [5/6]

probe operator>= ( probe const & p1,
double p2 )
inline

Definition at line 3260 of file z3++.h.

3260{ return p1 >= probe(p1.ctx(), p2); }

◆ operator>=() [6/6]

probe operator>= ( probe const & p1,
probe const & p2 )
inline

Definition at line 3257 of file z3++.h.

3257 {
3258 check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3259 }
Z3_probe Z3_API Z3_probe_ge(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is greater than or equal to the...

◆ operator^() [1/3]

expr operator^ ( expr const & a,
expr const & b )
inline

Definition at line 1940 of file z3++.h.

1940{ check_context(a, b); Z3_ast r = a.is_bool() ? Z3_mk_xor(a.ctx(), a, b) : Z3_mk_bvxor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.

◆ operator^() [2/3]

expr operator^ ( expr const & a,
int b )
inline

Definition at line 1941 of file z3++.h.

1941{ return a ^ a.ctx().num_val(b, a.get_sort()); }

◆ operator^() [3/3]

expr operator^ ( int a,
expr const & b )
inline

Definition at line 1942 of file z3++.h.

1942{ return b.ctx().num_val(a, b.get_sort()) ^ b; }

◆ operator|() [1/4]

expr operator| ( expr const & a,
expr const & b )
inline

Definition at line 1944 of file z3++.h.

1944{ if (a.is_bool()) return a || b; check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ operator|() [2/4]

expr operator| ( expr const & a,
int b )
inline

Definition at line 1945 of file z3++.h.

1945{ return a | a.ctx().num_val(b, a.get_sort()); }

◆ operator|() [3/4]

expr operator| ( int a,
expr const & b )
inline

Definition at line 1946 of file z3++.h.

1946{ return b.ctx().num_val(a, b.get_sort()) | b; }

◆ operator|() [4/4]

tactic operator| ( tactic const & t1,
tactic const & t2 )
inline

Definition at line 3130 of file z3++.h.

3130 {
3131 check_context(t1, t2);
3132 Z3_tactic r = Z3_tactic_or_else(t1.ctx(), t1, t2);
3133 t1.check_error();
3134 return tactic(t1.ctx(), r);
3135 }
Z3_tactic Z3_API Z3_tactic_or_else(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that first applies t1 to a given goal, if it fails then returns the result of t2 appl...

◆ operator||() [1/4]

expr operator|| ( bool a,
expr const & b )
inline
Precondition
b.is_bool()

Definition at line 1704 of file z3++.h.

1704{ return b.ctx().bool_val(a) || b; }

◆ operator||() [2/4]

expr operator|| ( expr const & a,
bool b )
inline
Precondition
a.is_bool()

Definition at line 1702 of file z3++.h.

1702{ return a || a.ctx().bool_val(b); }

◆ operator||() [3/4]

expr operator|| ( expr const & a,
expr const & b )
inline
Precondition
a.is_bool()
b.is_bool()

Definition at line 1693 of file z3++.h.

1693 {
1694 check_context(a, b);
1695 assert(a.is_bool() && b.is_bool());
1696 Z3_ast args[2] = { a, b };
1697 Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
1698 a.check_error();
1699 return expr(a.ctx(), r);
1700 }

◆ operator||() [4/4]

probe operator|| ( probe const & p1,
probe const & p2 )
inline

Definition at line 3280 of file z3++.h.

3280 {
3281 check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
3282 }
Z3_probe Z3_API Z3_probe_or(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when p1 or p2 evaluates to true.

◆ operator~()

expr operator~ ( expr const & a)
inline

Definition at line 2029 of file z3++.h.

2029{ Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ option()

expr option ( expr const & re)
inline

Definition at line 4102 of file z3++.h.

4102 {
4104 }
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)
Create the regular language [re].

◆ par_and_then()

tactic par_and_then ( tactic const & t1,
tactic const & t2 )
inline

Definition at line 3162 of file z3++.h.

3162 {
3163 check_context(t1, t2);
3164 Z3_tactic r = Z3_tactic_par_and_then(t1.ctx(), t1, t2);
3165 t1.check_error();
3166 return tactic(t1.ctx(), r);
3167 }
Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....

◆ par_or()

tactic par_or ( unsigned n,
tactic const * tactics )
inline

Definition at line 3153 of file z3++.h.

3153 {
3154 if (n == 0) {
3155 Z3_THROW(exception("a non-zero number of tactics need to be passed to par_or"));
3156 }
3157 array<Z3_tactic> buffer(n);
3158 for (unsigned i = 0; i < n; ++i) buffer[i] = tactics[i];
3159 return tactic(tactics[0u].ctx(), Z3_tactic_par_or(tactics[0u].ctx(), n, buffer.ptr()));
3160 }
Exception used to sign API usage errors.
Definition z3++.h:88
Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])
Return a tactic that applies the given tactics in parallel.
#define Z3_THROW(x)
Definition z3++.h:103

◆ partial_order()

func_decl partial_order ( sort const & a,
unsigned index )
inline

Definition at line 2273 of file z3++.h.

2273 {
2274 return to_func_decl(a.ctx(), Z3_mk_partial_order(a.ctx(), a, index));
2275 }
Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)
create a partial ordering relation over signature a and index id.

◆ pbeq()

expr pbeq ( expr_vector const & es,
int const * coeffs,
int bound )
inline

Definition at line 2414 of file z3++.h.

2414 {
2415 assert(es.size() > 0);
2416 context& ctx = es[0u].ctx();
2417 array<Z3_ast> _es(es);
2418 Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
2419 ctx.check_error();
2420 return expr(ctx, r);
2421 }
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pbge()

expr pbge ( expr_vector const & es,
int const * coeffs,
int bound )
inline

Definition at line 2406 of file z3++.h.

2406 {
2407 assert(es.size() > 0);
2408 context& ctx = es[0u].ctx();
2409 array<Z3_ast> _es(es);
2410 Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
2411 ctx.check_error();
2412 return expr(ctx, r);
2413 }
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pble()

expr pble ( expr_vector const & es,
int const * coeffs,
int bound )
inline

Definition at line 2398 of file z3++.h.

2398 {
2399 assert(es.size() > 0);
2400 context& ctx = es[0u].ctx();
2401 array<Z3_ast> _es(es);
2402 Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
2403 ctx.check_error();
2404 return expr(ctx, r);
2405 }
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ piecewise_linear_order()

func_decl piecewise_linear_order ( sort const & a,
unsigned index )
inline

Definition at line 2276 of file z3++.h.

2276 {
2277 return to_func_decl(a.ctx(), Z3_mk_piecewise_linear_order(a.ctx(), a, index));
2278 }
Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a piecewise linear ordering relation over signature a and index id.

◆ plus()

expr plus ( expr const & re)
inline

Definition at line 4099 of file z3++.h.

4099 {
4101 }
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)
Create the regular language re+.

◆ prefixof()

expr prefixof ( expr const & a,
expr const & b )
inline

Definition at line 4075 of file z3++.h.

4075 {
4076 check_context(a, b);
4077 Z3_ast r = Z3_mk_seq_prefix(a.ctx(), a, b);
4078 a.check_error();
4079 return expr(a.ctx(), r);
4080 }
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)
Check if prefix is a prefix of s.

◆ pw() [1/3]

expr pw ( expr const & a,
expr const & b )
inline

Definition at line 1637 of file z3++.h.

1637{ _Z3_MK_BIN_(a, b, Z3_mk_power); }
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ pw() [2/3]

expr pw ( expr const & a,
int b )
inline

Definition at line 1638 of file z3++.h.

1638{ return pw(a, a.ctx().num_val(b, a.get_sort())); }
expr pw(expr const &a, expr const &b)
Definition z3++.h:1637

◆ pw() [3/3]

expr pw ( int a,
expr const & b )
inline

Definition at line 1639 of file z3++.h.

1639{ return pw(b.ctx().num_val(a, b.get_sort()), b); }

◆ range()

expr range ( expr const & lo,
expr const & hi )
inline

Definition at line 4136 of file z3++.h.

4136 {
4137 check_context(lo, hi);
4138 Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
4139 lo.check_error();
4140 return expr(lo.ctx(), r);
4141 }
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

Referenced by context::function(), context::function(), context::function(), context::function(), context::function(), context::function(), context::function(), context::function(), context::function(), function(), function(), function(), function(), function(), function(), function(), function(), function(), context::recfun(), context::recfun(), context::recfun(), context::recfun(), context::recfun(), context::recfun(), recfun(), recfun(), recfun(), recfun(), and context::user_propagate_function().

◆ re_complement()

expr re_complement ( expr const & a)
inline

Definition at line 4133 of file z3++.h.

4133 {
4135 }
Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)
Create the complement of the regular language re.

◆ re_diff()

expr re_diff ( expr const & a,
expr const & b )
inline

Definition at line 4126 of file z3++.h.

4126 {
4127 check_context(a, b);
4128 context& ctx = a.ctx();
4129 Z3_ast r = Z3_mk_re_diff(ctx, a, b);
4130 ctx.check_error();
4131 return expr(ctx, r);
4132 }
Z3_ast Z3_API Z3_mk_re_diff(Z3_context c, Z3_ast re1, Z3_ast re2)
Create the difference of regular expressions.

◆ re_empty()

expr re_empty ( sort const & s)
inline

Definition at line 4108 of file z3++.h.

4108 {
4109 Z3_ast r = Z3_mk_re_empty(s.ctx(), s);
4110 s.check_error();
4111 return expr(s.ctx(), r);
4112 }
Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)
Create an empty regular expression of sort re.

◆ re_full()

expr re_full ( sort const & s)
inline

Definition at line 4113 of file z3++.h.

4113 {
4114 Z3_ast r = Z3_mk_re_full(s.ctx(), s);
4115 s.check_error();
4116 return expr(s.ctx(), r);
4117 }
Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)
Create an universal regular expression of sort re.

◆ re_intersect()

expr re_intersect ( expr_vector const & args)
inline

Definition at line 4118 of file z3++.h.

4118 {
4119 assert(args.size() > 0);
4120 context& ctx = args[0u].ctx();
4121 array<Z3_ast> _args(args);
4122 Z3_ast r = Z3_mk_re_intersect(ctx, _args.size(), _args.ptr());
4123 ctx.check_error();
4124 return expr(ctx, r);
4125 }
Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])
Create the intersection of the regular languages.

◆ recfun() [1/4]

func_decl recfun ( char const * name,
sort const & d1,
sort const & d2,
sort const & range )
inline

Definition at line 3950 of file z3++.h.

3950 {
3951 return range.ctx().recfun(name, d1, d2, range);
3952 }
func_decl recfun(symbol const &name, unsigned arity, sort const *domain, sort const &range)
Definition z3++.h:3705

◆ recfun() [2/4]

func_decl recfun ( char const * name,
sort const & d1,
sort const & range )
inline

Definition at line 3947 of file z3++.h.

3947 {
3948 return range.ctx().recfun(name, d1, range);
3949 }

◆ recfun() [3/4]

func_decl recfun ( char const * name,
unsigned arity,
sort const * domain,
sort const & range )
inline

Definition at line 3944 of file z3++.h.

3944 {
3945 return range.ctx().recfun(name, arity, domain, range);
3946 }

◆ recfun() [4/4]

func_decl recfun ( symbol const & name,
unsigned arity,
sort const * domain,
sort const & range )
inline

Definition at line 3941 of file z3++.h.

3941 {
3942 return range.ctx().recfun(name, arity, domain, range);
3943 }

◆ rem() [1/3]

expr rem ( expr const & a,
expr const & b )
inline

Definition at line 1657 of file z3++.h.

1657 {
1658 if (a.is_fpa() && b.is_fpa()) {
1660 } else {
1661 _Z3_MK_BIN_(a, b, Z3_mk_rem);
1662 }
1663 }
Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point remainder.
Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 rem arg2.

◆ rem() [2/3]

expr rem ( expr const & a,
int b )
inline

Definition at line 1664 of file z3++.h.

1664{ return rem(a, a.ctx().num_val(b, a.get_sort())); }
expr rem(expr const &a, expr const &b)
Definition z3++.h:1657

◆ rem() [3/3]

expr rem ( int a,
expr const & b )
inline

Definition at line 1665 of file z3++.h.

1665{ return rem(b.ctx().num_val(a, b.get_sort()), b); }

◆ repeat()

tactic repeat ( tactic const & t,
unsigned max = UINT_MAX )
inline

Definition at line 3137 of file z3++.h.

3137 {
3138 Z3_tactic r = Z3_tactic_repeat(t.ctx(), t, max);
3139 t.check_error();
3140 return tactic(t.ctx(), r);
3141 }
Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)
Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...

◆ reset_params()

void reset_params ( )
inline

Definition at line 83 of file z3++.h.

void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...

◆ round_fpa_to_closest_integer()

expr round_fpa_to_closest_integer ( expr const & t)
inline

Definition at line 2082 of file z3++.h.

2082 {
2083 assert(t.is_fpa());
2084 Z3_ast r = Z3_mk_fpa_round_to_integral(t.ctx(), t.ctx().fpa_rounding_mode(), t);
2085 t.check_error();
2086 return expr(t.ctx(), r);
2087 }
Z3_ast Z3_API Z3_mk_fpa_round_to_integral(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point roundToIntegral. Rounds a floating-point number to the closest integer,...

◆ sbv_to_fpa()

expr sbv_to_fpa ( expr const & t,
sort s )
inline

Definition at line 2061 of file z3++.h.

2061 {
2062 assert(t.is_bv());
2063 Z3_ast r = Z3_mk_fpa_to_fp_signed(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2064 t.check_error();
2065 return expr(t.ctx(), r);
2066 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

◆ select() [1/3]

expr select ( expr const & a,
expr const & i )
inline

forward declarations

Definition at line 3954 of file z3++.h.

3954 {
3955 check_context(a, i);
3956 Z3_ast r = Z3_mk_select(a.ctx(), a, i);
3957 a.check_error();
3958 return expr(a.ctx(), r);
3959 }
Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i)
Array read. The argument a is the array and i is the index of the array that gets read.

Referenced by expr::operator[](), expr::operator[](), and select().

◆ select() [2/3]

expr select ( expr const & a,
expr_vector const & i )
inline

Definition at line 3963 of file z3++.h.

3963 {
3964 check_context(a, i);
3965 array<Z3_ast> idxs(i);
3966 Z3_ast r = Z3_mk_select_n(a.ctx(), a, idxs.size(), idxs.ptr());
3967 a.check_error();
3968 return expr(a.ctx(), r);
3969 }
Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs)
n-ary Array read. The argument a is the array and idxs are the indices of the array that gets read.

◆ select() [3/3]

expr select ( expr const & a,
int i )
inline

Definition at line 3960 of file z3++.h.

3960 {
3961 return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
3962 }
expr select(expr const &a, expr const &i)
forward declarations
Definition z3++.h:3954

◆ set_add()

expr set_add ( expr const & s,
expr const & e )
inline

Definition at line 4020 of file z3++.h.

4020 {
4021 MK_EXPR2(Z3_mk_set_add, s, e);
4022 }
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.

◆ set_complement()

expr set_complement ( expr const & a)
inline

Definition at line 4048 of file z3++.h.

4048 {
4050 }
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.

◆ set_del()

expr set_del ( expr const & s,
expr const & e )
inline

Definition at line 4024 of file z3++.h.

4024 {
4025 MK_EXPR2(Z3_mk_set_del, s, e);
4026 }
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.

◆ set_difference()

expr set_difference ( expr const & a,
expr const & b )
inline

Definition at line 4044 of file z3++.h.

4044 {
4046 }
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.

◆ set_intersect()

expr set_intersect ( expr const & a,
expr const & b )
inline

Definition at line 4036 of file z3++.h.

4036 {
4037 check_context(a, b);
4038 Z3_ast es[2] = { a, b };
4039 Z3_ast r = Z3_mk_set_intersect(a.ctx(), 2, es);
4040 a.check_error();
4041 return expr(a.ctx(), r);
4042 }
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.

◆ set_member()

expr set_member ( expr const & s,
expr const & e )
inline

Definition at line 4052 of file z3++.h.

4052 {
4054 }
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.

◆ set_param() [1/3]

void set_param ( char const * param,
bool value )
inline

Definition at line 81 of file z3++.h.

81{ Z3_global_param_set(param, value ? "true" : "false"); }
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.

◆ set_param() [2/3]

void set_param ( char const * param,
char const * value )
inline

Definition at line 80 of file z3++.h.

80{ Z3_global_param_set(param, value); }

◆ set_param() [3/3]

void set_param ( char const * param,
int value )
inline

Definition at line 82 of file z3++.h.

82{ auto str = std::to_string(value); Z3_global_param_set(param, str.c_str()); }

◆ set_subset()

expr set_subset ( expr const & a,
expr const & b )
inline

Definition at line 4056 of file z3++.h.

4056 {
4058 }
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.

◆ set_union()

expr set_union ( expr const & a,
expr const & b )
inline

Definition at line 4028 of file z3++.h.

4028 {
4029 check_context(a, b);
4030 Z3_ast es[2] = { a, b };
4031 Z3_ast r = Z3_mk_set_union(a.ctx(), 2, es);
4032 a.check_error();
4033 return expr(a.ctx(), r);
4034 }
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.

◆ sext()

expr sext ( expr const & a,
unsigned i )
inline

Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

Definition at line 2268 of file z3++.h.

2268{ return to_expr(a.ctx(), Z3_mk_sign_ext(a.ctx(), i, a)); }
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...

◆ sge() [1/3]

expr sge ( expr const & a,
expr const & b )
inline

signed greater than or equal to operator for bitvectors.

Definition at line 2141 of file z3++.h.

2141{ return to_expr(a.ctx(), Z3_mk_bvsge(a.ctx(), a, b)); }

Referenced by sge(), and sge().

◆ sge() [2/3]

expr sge ( expr const & a,
int b )
inline

Definition at line 2142 of file z3++.h.

2142{ return sge(a, a.ctx().num_val(b, a.get_sort())); }
expr sge(expr const &a, expr const &b)
signed greater than or equal to operator for bitvectors.
Definition z3++.h:2141

◆ sge() [3/3]

expr sge ( int a,
expr const & b )
inline

Definition at line 2143 of file z3++.h.

2143{ return sge(b.ctx().num_val(a, b.get_sort()), b); }

◆ sgt() [1/3]

expr sgt ( expr const & a,
expr const & b )
inline

signed greater than operator for bitvectors.

Definition at line 2147 of file z3++.h.

2147{ return to_expr(a.ctx(), Z3_mk_bvsgt(a.ctx(), a, b)); }

Referenced by sgt(), and sgt().

◆ sgt() [2/3]

expr sgt ( expr const & a,
int b )
inline

Definition at line 2148 of file z3++.h.

2148{ return sgt(a, a.ctx().num_val(b, a.get_sort())); }
expr sgt(expr const &a, expr const &b)
signed greater than operator for bitvectors.
Definition z3++.h:2147

◆ sgt() [3/3]

expr sgt ( int a,
expr const & b )
inline

Definition at line 2149 of file z3++.h.

2149{ return sgt(b.ctx().num_val(a, b.get_sort()), b); }

◆ shl() [1/3]

expr shl ( expr const & a,
expr const & b )
inline

shift left operator for bitvectors

Definition at line 2207 of file z3++.h.

2207{ return to_expr(a.ctx(), Z3_mk_bvshl(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.

Referenced by shl(), and shl().

◆ shl() [2/3]

expr shl ( expr const & a,
int b )
inline

Definition at line 2208 of file z3++.h.

2208{ return shl(a, a.ctx().num_val(b, a.get_sort())); }
expr shl(expr const &a, expr const &b)
shift left operator for bitvectors
Definition z3++.h:2207

◆ shl() [3/3]

expr shl ( int a,
expr const & b )
inline

Definition at line 2209 of file z3++.h.

2209{ return shl(b.ctx().num_val(a, b.get_sort()), b); }

◆ sle() [1/3]

expr sle ( expr const & a,
expr const & b )
inline

signed less than or equal to operator for bitvectors.

Definition at line 2129 of file z3++.h.

2129{ return to_expr(a.ctx(), Z3_mk_bvsle(a.ctx(), a, b)); }

Referenced by sle(), and sle().

◆ sle() [2/3]

expr sle ( expr const & a,
int b )
inline

Definition at line 2130 of file z3++.h.

2130{ return sle(a, a.ctx().num_val(b, a.get_sort())); }
expr sle(expr const &a, expr const &b)
signed less than or equal to operator for bitvectors.
Definition z3++.h:2129

◆ sle() [3/3]

expr sle ( int a,
expr const & b )
inline

Definition at line 2131 of file z3++.h.

2131{ return sle(b.ctx().num_val(a, b.get_sort()), b); }

◆ slt() [1/3]

expr slt ( expr const & a,
expr const & b )
inline

signed less than operator for bitvectors.

Definition at line 2135 of file z3++.h.

2135{ return to_expr(a.ctx(), Z3_mk_bvslt(a.ctx(), a, b)); }

Referenced by slt(), and slt().

◆ slt() [2/3]

expr slt ( expr const & a,
int b )
inline

Definition at line 2136 of file z3++.h.

2136{ return slt(a, a.ctx().num_val(b, a.get_sort())); }
expr slt(expr const &a, expr const &b)
signed less than operator for bitvectors.
Definition z3++.h:2135

◆ slt() [3/3]

expr slt ( int a,
expr const & b )
inline

Definition at line 2137 of file z3++.h.

2137{ return slt(b.ctx().num_val(a, b.get_sort()), b); }

◆ smod() [1/3]

expr smod ( expr const & a,
expr const & b )
inline

signed modulus operator for bitvectors

Definition at line 2193 of file z3++.h.

2193{ return to_expr(a.ctx(), Z3_mk_bvsmod(a.ctx(), a, b)); }

Referenced by smod(), and smod().

◆ smod() [2/3]

expr smod ( expr const & a,
int b )
inline

Definition at line 2194 of file z3++.h.

2194{ return smod(a, a.ctx().num_val(b, a.get_sort())); }
expr smod(expr const &a, expr const &b)
signed modulus operator for bitvectors
Definition z3++.h:2193

◆ smod() [3/3]

expr smod ( int a,
expr const & b )
inline

Definition at line 2195 of file z3++.h.

2195{ return smod(b.ctx().num_val(a, b.get_sort()), b); }

◆ sqrt()

expr sqrt ( expr const & a,
expr const & rm )
inline

Definition at line 2015 of file z3++.h.

2015 {
2016 check_context(a, rm);
2017 assert(a.is_fpa());
2018 Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
2019 a.check_error();
2020 return expr(a.ctx(), r);
2021 }
Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point square root.

◆ srem() [1/3]

expr srem ( expr const & a,
expr const & b )
inline

signed remainder operator for bitvectors

Definition at line 2186 of file z3++.h.

2186{ return to_expr(a.ctx(), Z3_mk_bvsrem(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).

Referenced by srem(), and srem().

◆ srem() [2/3]

expr srem ( expr const & a,
int b )
inline

Definition at line 2187 of file z3++.h.

2187{ return srem(a, a.ctx().num_val(b, a.get_sort())); }
expr srem(expr const &a, expr const &b)
signed remainder operator for bitvectors
Definition z3++.h:2186

◆ srem() [3/3]

expr srem ( int a,
expr const & b )
inline

Definition at line 2188 of file z3++.h.

2188{ return srem(b.ctx().num_val(a, b.get_sort()), b); }

◆ star()

expr star ( expr const & re)
inline

Definition at line 4105 of file z3++.h.

4105 {
4107 }
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)
Create the regular language re*.

◆ store() [1/5]

expr store ( expr const & a,
expr const & i,
expr const & v )
inline

Definition at line 3971 of file z3++.h.

3971 {
3972 check_context(a, i); check_context(a, v);
3973 Z3_ast r = Z3_mk_store(a.ctx(), a, i, v);
3974 a.check_error();
3975 return expr(a.ctx(), r);
3976 }
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.

Referenced by store(), store(), and store().

◆ store() [2/5]

expr store ( expr const & a,
expr i,
int v )
inline

Definition at line 3979 of file z3++.h.

3979{ return store(a, i, a.ctx().num_val(v, a.get_sort().array_range())); }
expr store(expr const &a, expr const &i, expr const &v)
Definition z3++.h:3971

◆ store() [3/5]

expr store ( expr const & a,
expr_vector const & i,
expr const & v )
inline

Definition at line 3983 of file z3++.h.

3983 {
3984 check_context(a, i); check_context(a, v);
3985 array<Z3_ast> idxs(i);
3986 Z3_ast r = Z3_mk_store_n(a.ctx(), a, idxs.size(), idxs.ptr(), v);
3987 a.check_error();
3988 return expr(a.ctx(), r);
3989 }
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.

◆ store() [4/5]

expr store ( expr const & a,
int i,
expr const & v )
inline

Definition at line 3978 of file z3++.h.

3978{ return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), v); }

◆ store() [5/5]

expr store ( expr const & a,
int i,
int v )
inline

Definition at line 3980 of file z3++.h.

3980 {
3981 return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), a.ctx().num_val(v, a.get_sort().array_range()));
3982 }

◆ suffixof()

expr suffixof ( expr const & a,
expr const & b )
inline

Definition at line 4069 of file z3++.h.

4069 {
4070 check_context(a, b);
4071 Z3_ast r = Z3_mk_seq_suffix(a.ctx(), a, b);
4072 a.check_error();
4073 return expr(a.ctx(), r);
4074 }
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)
Check if suffix is a suffix of s.

◆ sum()

expr sum ( expr_vector const & args)
inline

Definition at line 2438 of file z3++.h.

2438 {
2439 assert(args.size() > 0);
2440 context& ctx = args[0u].ctx();
2441 array<Z3_ast> _args(args);
2442 Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
2443 ctx.check_error();
2444 return expr(ctx, r);
2445 }

◆ to_check_result()

check_result to_check_result ( Z3_lbool l)
inline

Definition at line 147 of file z3++.h.

147 {
148 if (l == Z3_L_TRUE) return sat;
149 else if (l == Z3_L_FALSE) return unsat;
150 return unknown;
151 }
@ Z3_L_TRUE
Definition z3_api.h:64
@ Z3_L_FALSE
Definition z3_api.h:62

Referenced by optimize::check(), optimize::check(), solver::check(), solver::check(), solver::check(), solver::consequences(), fixedpoint::query(), and fixedpoint::query().

◆ to_expr()

expr to_expr ( context & c,
Z3_ast a )
inline

Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the whole C API with the C++ layer defined in this file.

Definition at line 2107 of file z3++.h.

2107 {
2108 c.check_error();
2109 assert(Z3_get_ast_kind(c, a) == Z3_APP_AST ||
2111 Z3_get_ast_kind(c, a) == Z3_VAR_AST ||
2113 return expr(c, a);
2114 }
Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a)
Return the kind of the given AST.
@ Z3_APP_AST
Definition z3_api.h:143
@ Z3_VAR_AST
Definition z3_api.h:144
@ Z3_NUMERAL_AST
Definition z3_api.h:142
@ Z3_QUANTIFIER_AST
Definition z3_api.h:145

Referenced by ashr(), lshr(), sext(), sge(), sgt(), shl(), sle(), slt(), smod(), srem(), udiv(), uge(), ugt(), ule(), ult(), urem(), and zext().

◆ to_func_decl()

func_decl to_func_decl ( context & c,
Z3_func_decl f )
inline

Definition at line 2121 of file z3++.h.

2121 {
2122 c.check_error();
2123 return func_decl(c, f);
2124 }
Function declaration (aka function definition). It is the signature of interpreted and uninterpreted ...
Definition z3++.h:760

Referenced by linear_order(), partial_order(), piecewise_linear_order(), and tree_order().

◆ to_re()

expr to_re ( expr const & s)
inline

Definition at line 4093 of file z3++.h.

4093 {
4095 }
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)
Create a regular expression that accepts the sequence seq.

◆ to_real()

expr to_real ( expr const & a)
inline

Definition at line 3911 of file z3++.h.

3911{ Z3_ast r = Z3_mk_int2real(a.ctx(), a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.

◆ to_sort()

sort to_sort ( context & c,
Z3_sort s )
inline

Definition at line 2116 of file z3++.h.

2116 {
2117 c.check_error();
2118 return sort(c, s);
2119 }
A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort.
Definition z3++.h:657

Referenced by context::enumeration_sort(), context::tuple_sort(), context::uninterpreted_sort(), and context::uninterpreted_sort().

◆ tree_order()

func_decl tree_order ( sort const & a,
unsigned index )
inline

Definition at line 2279 of file z3++.h.

2279 {
2280 return to_func_decl(a.ctx(), Z3_mk_tree_order(a.ctx(), a, index));
2281 }
Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)
create a tree ordering relation over signature a identified using index id.

◆ try_for()

tactic try_for ( tactic const & t,
unsigned ms )
inline

Definition at line 3148 of file z3++.h.

3148 {
3149 Z3_tactic r = Z3_tactic_try_for(t.ctx(), t, ms);
3150 t.check_error();
3151 return tactic(t.ctx(), r);
3152 }
Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)
Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...

◆ ubv_to_fpa()

expr ubv_to_fpa ( expr const & t,
sort s )
inline

Definition at line 2068 of file z3++.h.

2068 {
2069 assert(t.is_bv());
2070 Z3_ast r = Z3_mk_fpa_to_fp_unsigned(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
2071 t.check_error();
2072 return expr(t.ctx(), r);
2073 }
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

◆ udiv() [1/3]

expr udiv ( expr const & a,
expr const & b )
inline

unsigned division operator for bitvectors.

Definition at line 2179 of file z3++.h.

2179{ return to_expr(a.ctx(), Z3_mk_bvudiv(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.

Referenced by udiv(), and udiv().

◆ udiv() [2/3]

expr udiv ( expr const & a,
int b )
inline

Definition at line 2180 of file z3++.h.

2180{ return udiv(a, a.ctx().num_val(b, a.get_sort())); }
expr udiv(expr const &a, expr const &b)
unsigned division operator for bitvectors.
Definition z3++.h:2179

◆ udiv() [3/3]

expr udiv ( int a,
expr const & b )
inline

Definition at line 2181 of file z3++.h.

2181{ return udiv(b.ctx().num_val(a, b.get_sort()), b); }

◆ uge() [1/3]

expr uge ( expr const & a,
expr const & b )
inline

unsigned greater than or equal to operator for bitvectors.

Definition at line 2167 of file z3++.h.

2167{ return to_expr(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b)); }

Referenced by uge(), and uge().

◆ uge() [2/3]

expr uge ( expr const & a,
int b )
inline

Definition at line 2168 of file z3++.h.

2168{ return uge(a, a.ctx().num_val(b, a.get_sort())); }
expr uge(expr const &a, expr const &b)
unsigned greater than or equal to operator for bitvectors.
Definition z3++.h:2167

◆ uge() [3/3]

expr uge ( int a,
expr const & b )
inline

Definition at line 2169 of file z3++.h.

2169{ return uge(b.ctx().num_val(a, b.get_sort()), b); }

◆ ugt() [1/3]

expr ugt ( expr const & a,
expr const & b )
inline

unsigned greater than operator for bitvectors.

Definition at line 2173 of file z3++.h.

2173{ return to_expr(a.ctx(), Z3_mk_bvugt(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.

Referenced by ugt(), and ugt().

◆ ugt() [2/3]

expr ugt ( expr const & a,
int b )
inline

Definition at line 2174 of file z3++.h.

2174{ return ugt(a, a.ctx().num_val(b, a.get_sort())); }
expr ugt(expr const &a, expr const &b)
unsigned greater than operator for bitvectors.
Definition z3++.h:2173

◆ ugt() [3/3]

expr ugt ( int a,
expr const & b )
inline

Definition at line 2175 of file z3++.h.

2175{ return ugt(b.ctx().num_val(a, b.get_sort()), b); }

◆ ule() [1/3]

expr ule ( expr const & a,
expr const & b )
inline

unsigned less than or equal to operator for bitvectors.

Definition at line 2155 of file z3++.h.

2155{ return to_expr(a.ctx(), Z3_mk_bvule(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.

Referenced by ule(), and ule().

◆ ule() [2/3]

expr ule ( expr const & a,
int b )
inline

Definition at line 2156 of file z3++.h.

2156{ return ule(a, a.ctx().num_val(b, a.get_sort())); }
expr ule(expr const &a, expr const &b)
unsigned less than or equal to operator for bitvectors.
Definition z3++.h:2155

◆ ule() [3/3]

expr ule ( int a,
expr const & b )
inline

Definition at line 2157 of file z3++.h.

2157{ return ule(b.ctx().num_val(a, b.get_sort()), b); }

◆ ult() [1/3]

expr ult ( expr const & a,
expr const & b )
inline

unsigned less than operator for bitvectors.

Definition at line 2161 of file z3++.h.

2161{ return to_expr(a.ctx(), Z3_mk_bvult(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.

Referenced by ult(), and ult().

◆ ult() [2/3]

expr ult ( expr const & a,
int b )
inline

Definition at line 2162 of file z3++.h.

2162{ return ult(a, a.ctx().num_val(b, a.get_sort())); }
expr ult(expr const &a, expr const &b)
unsigned less than operator for bitvectors.
Definition z3++.h:2161

◆ ult() [3/3]

expr ult ( int a,
expr const & b )
inline

Definition at line 2163 of file z3++.h.

2163{ return ult(b.ctx().num_val(a, b.get_sort()), b); }

◆ urem() [1/3]

expr urem ( expr const & a,
expr const & b )
inline

unsigned reminder operator for bitvectors

Definition at line 2200 of file z3++.h.

2200{ return to_expr(a.ctx(), Z3_mk_bvurem(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.

Referenced by urem(), and urem().

◆ urem() [2/3]

expr urem ( expr const & a,
int b )
inline

Definition at line 2201 of file z3++.h.

2201{ return urem(a, a.ctx().num_val(b, a.get_sort())); }
expr urem(expr const &a, expr const &b)
unsigned reminder operator for bitvectors
Definition z3++.h:2200

◆ urem() [3/3]

expr urem ( int a,
expr const & b )
inline

Definition at line 2202 of file z3++.h.

2202{ return urem(b.ctx().num_val(a, b.get_sort()), b); }

◆ when()

tactic when ( probe const & p,
tactic const & t )
inline

Definition at line 3465 of file z3++.h.

3465 {
3466 check_context(p, t);
3467 Z3_tactic r = Z3_tactic_when(t.ctx(), p, t);
3468 t.check_error();
3469 return tactic(t.ctx(), r);
3470 }
Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)
Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...

◆ with() [1/2]

simplifier with ( simplifier const & t,
params const & p )
inline

Definition at line 3204 of file z3++.h.

3204 {
3205 Z3_simplifier r = Z3_simplifier_using_params(t.ctx(), t, p);
3206 t.check_error();
3207 return simplifier(t.ctx(), r);
3208 }
Z3_simplifier Z3_API Z3_simplifier_using_params(Z3_context c, Z3_simplifier t, Z3_params p)
Return a simplifier that applies t using the given set of parameters.

◆ with() [2/2]

tactic with ( tactic const & t,
params const & p )
inline

Definition at line 3143 of file z3++.h.

3143 {
3144 Z3_tactic r = Z3_tactic_using_params(t.ctx(), t, p);
3145 t.check_error();
3146 return tactic(t.ctx(), r);
3147 }
Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)
Return a tactic that applies t using the given set of parameters.

◆ xnor()

expr xnor ( expr const & a,
expr const & b )
inline

Definition at line 1950 of file z3++.h.

1950{ if (a.is_bool()) return !(a ^ b); check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise xnor.

◆ zext()

expr zext ( expr const & a,
unsigned i )
inline

Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

Definition at line 2228 of file z3++.h.

2228{ return to_expr(a.ctx(), Z3_mk_zero_ext(a.ctx(), i, a)); }
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...